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The comparison of sets of objects is a research topic with applications in diverse fields
such as computer science, biology and psychology. Since the introduction of the Jaccard
index, many techniques have been proposed. This paper aims at extending an existing
framework of comparison indices for sets. Firstly, the novel indices account for similarities
between elements, rather than identity of elements as is the case for existing techniques.
As a result, a richer framework of comparison indices is obtained. The use of fuzzy
quantifiers in this framework is shown. Secondly, the machinery for sets is extended to
the case of multisets, which results in two classes of comparison indices. The first class
considers each element instance as a separate element, while the second class considers
groups of elements instances as an atomic entity. The number of instances is then a
property of this group, that is taken into account when calculating similarity between
element groups.
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1. Introduction

In the field of computer science, comparison of data is an often occurring task. In

the most general form, two pieces of data are given as input of a comparison process

and the output quantifies a predefined relation (e.g.: similarity, preference, satisfac-

tion, . . . ) between the given data. Such comparison tasks are encountered in, among

others, data fusion, data filtering, querying, entity identification and case based rea-

soning. In all these examples, the data to be compared have a specific structure.

Although many examples of comparing unstructured or semi-structured data ex-

ist, the focus of this paper is on structured data (e.g. databases, OO-applications,

. . . ). Many solutions to tackle comparison of structured data have been presented

in the past decades.1–4 In each of these models, a complex data structure is as-

sumed. Instances of such complex structures are denoted by the term object here

and the problem of comparing objects is denoted object matching. An object has
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the property that it can be structurally decomposed into sub-objects. For example,

relational tables can be decomposed into attributes, OO-objects can be decomposed

into members, which in turn can be objects. It follows that the problem of com-

paring objects is decomposed to new comparison problems. These new problems

have the advantage that they are comparison problems in well known domains of

simple data types. Examples of such data types are numerical values, strings and

booleans. This paper deals with comparison of the data types sets and multisets.

These data types are of interest as many valued data types often occur, especially

in OO-environments. Further on, the techniques introduced in this paper are based

on the framework of Dubois and Prade,5 which is a framework for comparison of

fuzzy sets. As a consequence, the introduced techniques are applicable on fuzzy sets

and fuzzy multisets as well.

The comparison indices proposed in this paper differ from those presented in the

unified framework of Dubois and Prade in two ways. Firstly, element similarities

are taken into account. All existing indices are based on the same two-step process:

(i) calculation of derived sets (e.g.: intersection, symmetrical difference, . . . ) and

(ii) evaluation of these derived sets (e.g.: through fuzzy measures). An important

observation is that in step (i), calculation of derived sets is based on element equality.

In many cases of set comparison, set elements are considered as object properties.

More specific, an object is modeled by summarizing the properties owned by the

object. However, when the elements of sets are objects themselves, rather than

properties, the use of equality becomes too stringent. For that purpose, indices

defined in this paper, generalize element equality to similarity. Secondly, comparison

of multisets is studied as an interesting generalization of the case of regular sets.

The remainder of the paper is structured as follows. In Sec. 2, the framework by

Dubois and Prade for comparison of fuzzy sets is explained. Based on this frame-

work, generalized comparison indices for (fuzzy) sets, taking element similarity into

account, are defined in Sec. 3. Next, the use of these indices in a framework for

comparison of (fuzzy) multisets is studied in Sec. 4. Finally, the most important

contributions of this paper are summarized and some concluding remarks are given

in Sec. 5.

2. Related Work

In literature, a large variety of indices for comparison of sets exists. The first such

index is due to Jaccard.6 For two sets A and B, the Jaccard index is given by:

SJac(A,B) =
|A ∩ B|

|A ∪ B|
(1)

Many other indices such as symmetrical Tversky indices, Dice index, . . . exist.7,8 It

can be shown that these indices can be classified in equivalence classes with respect

to the order induced on the compared sets.9,10 As such, it can be proven that Jaccard

and symmetrical Tversky are equivalent. Going even further, some non-equivalent

indices are proven to be quasi-equivalent, based on fuzzy order-equivalence.11
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The techniques introduced in this paper are based on the work of Dubois and

Prade.5 They provide a framework for comparison of fuzzy sets that is based on the

concept of scalar fuzzy set evaluators.

Definition 1. Given a universe U , and ℘̃(U) the set of fuzzy sets on U , a scalar

fuzzy set evaluator on U is a mapping g from ℘̃(U) to [0, 1] such that:

• g(∅) = 0

• g(U) = 1

• A ⊆ B ⇒ g(A) ≤ g(B)

(2)

A scalar fuzzy set evaluator g is called universal if and only if g(A) = 1 ⇔ A = U

and existential if and only if g(A) = 0 ⇔ A = ∅. Next to these definitions by Dubois

and Prade, the novel concept of a uniform evaluator is introduced and defined in

this paper. A scalar fuzzy set evaluator will be called uniform if the image of g(A)

depends solely on the cardinality of A. For a uniform evaluator g, there always exists

a increasing function gc : [0, |U |] → [0, 1] such that ∀A ∈ ℘̃(U) : gc(|A|) = g(A).

For example, the uniform probability measure P is defined as P (A) = |A|
|U | and

Pc(u) = u/|U |. If a scalar fuzzy set evaluator g is non-uniform, the image of g

depends on elements that are contained in the set. The symmetrical difference of

sets (∆) is an important concept in the framework of Dubois and Prade. For crisp

sets, ∆ is defined as:

A∆B = (A ∪ B) ∩ (Ā ∪ B̄) = (Ā ∩ B) ∪ (A ∩ B̄) (3)

with X̄ the complementary set of X . The identity in Eq. (3) remains valid if oper-

ators for intersection, union and complement are implemented by resp. min, max

and 1 − x. Formally:

µA∆B(u) = min(max(µA(u), µB(u)),max(1 − µA(u), 1 − µB(u)))

= max(min(1 − µA(u), µB(u)),min(µA(u), 1 − µB(u)))
(4)

In case another t-norm/t-conorm pair is used, the identity does not hold anymore.

Based on scalar fuzzy set evaluator, and the set operations for fuzzy sets, Dubois and

Prade define three types of comparison indices: inclusion indices, partial matching

indices and similarity indices.

2.1. Inclusion indices

As the name suggests, an inclusion index indicates the extent to which one set

contains another set. Dubois and Prade provide three axiomatic requirements for

an inclusion index I :

• I(A,B) = 1 ⇔ Ā ∪ B = U

• A ∩B = ∅ ⇒ I(A,B) = 0

• I(A,B)depends on a scalar evaluation of Ā ∪ B, namely g(Ā ∪ B)

(5)
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Due to the first and third constraint, g must be a universal evaluator. If A and B

have disjoint supports, then Ā∪B = Ā, so g(Ā∪B) ∈ [g(Ā), 1]. Scaling this interval

results in an inclusion index with the unit interval as image:

I(A,B) =
g(Ā ∪B) − g(Ā)

1 − g(Ā)
(6)

In the context of object matching, an inclusion index can be used whenever it is

sufficient that the set belonging to one object, is a part of the set belonging to

another object. Such is the case with selecting job candidates. In that case, the

required profile for a job is compared to candidate profiles, where each profile is

a set of skills. When selecting candidates, it is important that a candidate has all

skills required for the job. However, candidate skills that are not required for the

job, are redundant. In other words, the set of candidate skills must contain the job

skills.

2.2. Partial matching indices

A partial matching index is a symmetrical index that evaluates the intersection of

two sets. Each partial matching index PM must satisfy four axiomatic requirements:

• PM(A,B) = 0 ⇔ A ∪ B = ∅

• A ⊆ core(B) ∨ B ⊆ core(A) ⇒ PM(A,B) = 1

• PM(A,B) = PM(B,A)

• PM(A,B) depends on a scalar evaluation of A ∩ B, namely g(A ∩B)

(7)

Due to the first and the fourth constraint, g must be an existential evaluator. A

natural way of constructing partial matching index is:

PM(A,B) =
g(A ∩ B)

f(A,B)
(8)

with f a commutative ℘̃(U)2 → [0, 1] mapping such that f(A,B) ≥ g(A ∩ B).

To satisfy the second axiomatic condition, f(A,B) = g(A) if A ⊆ core(B). An

appropriate choice for f(A,B) is min(|A|, |B|). Partial matching indices are useful

in object matching if a minimal overlap between many valued attributes is required.

For example, assume a database with electronical devices and a query for devices

that are compatible. One of the requirements is then that devices can be plugged

into each other, which can be done by using a partial matching index that compares

the inputs and outputs of devices.

2.3. Similarity indices

While a partial matching index evaluates the intersection of two sets, a similarity

index evaluates the symmetrical difference between two sets. In the framework of



July 13, 2009 10:57 WSPC/INSTRUCTION FILE 00607

Comparison of Sets and Multisets 157

Dubois and Prade, a similarity index S satisfies the following axiomatic constraints:

• S(A,B) = 1 ⇔ A∆B = ∅

• supp(A) ∩ supp(B) = ∅ ⇒ S(A,B) = 0

• S(A,B) = S(B,A)

• S(A,B) depends on g(A∆B) or on g(Ā ∩B) and g(A ∩ B̄)

(9)

Based on this set of axiomatic requirements, three types of similarity indices are

defined. Indices of the first type are based on g(A∆B). In this case, g must be a

universal evaluator. For two sets with disjoint supports, A∆B = A∪B, so g(A∪B)

is a lower limit for g(A∆B). Hence, after scaling, a similarity index of the first type,

with image [0, 1], is given by:

S(A,B) =
g(A∆B) − g(A ∪ B)

1 − g(A ∪B)
(10)

Substitution of g with its derived existential evaluator g′, such that g′(A) = 1−g(Ā),

yields the following equivalent expression:

S(A,B) =
g′(A ∪B) − g′(A∆B)

g′(A ∪ B)
(11)

If g is the uniform probability measure then the Jaccard index is obtained:

S(A,B) =
|A ∩B|

|A ∪B|
= SJac(A,B) (12)

Similarity indices of the second type are constructed by using a symmetrical function

f of g(Ā ∩B) and g(A∩ B̄). If ∆ is defined based on ∪ then A∆B = ∅ ⇒ A ∪ B̄ =

Ā ∪ B = U . It follows that f(1, 1) must equal 1. If supp(A)∩supp(B) = ∅, then

Ā∪B = Ā and A∪ B̄ = B̄. Hence, a normalized similarity index of the second type

is given by:

S(A,B) =
f
(

g
(

A ∪ B̄
)

, g
(

Ā ∪ B
))

− f
(

g
(

Ā
)

, g
(

B̄
))

1 − f
(

g
(

Ā
)

, g
(

B̄
)) (13)

Finally, the third type of indices are based on a symmetrical combination of an

inclusion index. Hence, this type of indices is indirectly based on g(A ∩ B̄) and

g(Ā ∪ B). They are given by:

S(A,B) = h (I (A,B) , I (B,A)) (14)

with h a commutative function satisfying h(x, y) = 1 ⇔ x = y = 1 and h(0, 0) = 0.

2.4. Related approaches

Maŕın et al.3 introduced an inclusion index and a derived similarity index for fuzzy

sets that takes similarities of elements into acount. Let A and B be two fuzzy sets

in a universe X and s a similarity relation defined over X . The inclusion of A into

B, denoted Is(A,B), is defined as follows:

Is(A,B) = min
x∈X

max
y∈X

θA,B,s(x, y) (15)
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with:

θA,B,s(x, y) = T (I(µA(x), µB(y)), s(x, y)) (16)

where T is a t-norm and I an implicator.

Using this inclusion index, one can build a similarity index as follows:

Ss(A,B) = T (Is(A,B), Is(B,A)) (17)

Because this similarity index can result in relatively high similarities, even if the

cardinalities of the sets are very different, it can be necessary to correct the result

by using the cardinality ratio min(|A|,|B|)
max(|A|,|B|) , provided that max(|A|, |B|) > 0.

3. Comparison Indices for Sets

In this section, the framework of comparison indices introduced in Sec. 2 is extended

towards a framework that accounts for similarities between elements. As already

mentioned, a classical setting assumes the universe U to be a list of properties an

object can have. In such a setting, each element specifies a particular property and

comparison of sets comes down to verification of shared properties. The use of el-

ement equality is sufficient in this case. However, when comparing many valued

attributes in an object matching setting, the ‘element-of’ relation is not necessarily

compatible with the ‘is-a-property-of’ relation. It is also possible that similarities

between elements must be taken into account, for example because element equal-

ity is not informative enough in an object matching context. Moreover, similarity

between two sets should measure similarities between elements, rather than mea-

suring the extent to which sets contain the same elements. As an example, consider

a social network site where people can maintain a profile. It is then of interest to

search for people with similar interests. Assume that a profile contains a ‘hobby’

field which is clearly a many valued attribute. When searching for similar profiles,

similarity between hobbies should not only search for people with the same hobbies,

but also people with similar hobbies.

Justified by these considerations, it is studied in the following how a comparison

index on the domain ℘(U) (or ℘̃(U) in a more general case) can be constructed,

thereby using a comparison index on the domain U . For the determination of simi-

larity between elements, it is assumed that a similarity measure s on the universe

U is given. An important aspect is that all comparison indices are based on derived

sets (intersection, union, difference). Obtaining these sets is based on element iden-

tity. Further on, scalar fuzzy set evaluators can also be based on element identity

as non-uniform evaluators depend on the exact elements. Replacing element iden-

tity with element similarity in all these calculations is a non trivial problem. In

many cases, similarity measures are assumed to be strictly reflexive, which means

that ∀(u, v) ∈ U2 : s(u, v) = 1 ⇔ u = v. In what follows, unless explicitly stated

otherwise, this assumption is rejected as in many applications of set comparison,
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elements of the sets are compared on a part of their properties. Hence, it is pos-

sible that elements have only equal values for these properties and are considered

equivalent in the context of the comparison.

Before the three classes of comparison indices are discussed, attention is given

to the extension of set operators. As an example, assume the intersection operator

(∩) is to be extended to an operator ∩s, that is based on the similarity measure s.

For two sets A and B, and elements a ∈ A and b ∈ B, with a 6= b, but s(a, b) > 0,

the question is which of these elements belongs in the intersection. Adding them

both would increase the intersection cardinality with one, which should be avoided.

However choosing one is fully arbitrary. An option could be to put both elements

in the intersection such that:

µA∩sB(a) + µA∩sB(b) = 1 and
µA∩sB(a)

µA∩sB(b)
=
µA(a)

µB(b)
. (18)

The solution proposed here avoids the actual determination of the extended in-

tersection. It is assumed that a comparison index uses a uniform scalar fuzzy set

evaluator, which means that only the number of common elements is important.

Hence, only the cardinality of the extended intersection is calculated, which avoids

the selection problem as described above. Of course, the assumption of a uniform

evaluator implies that specific elements weights can not be used. The proposed de-

termination of the number of common elements of two (fuzzy) sets, is based on a

one-to-one relation between the fuzzy two sets. Assume A and B, two (fuzzy) sets

in the universe U , and s a similarity measure over U . Let Rs be a one-to-one fuzzy

relation (i.e. each element of A and B can be an element of at most one couple of

Rs), such that:

∀(a, b) ∈ supp(Rs) : µRs
(a, b) = T ′ (T (µA (a) , µB (b)) , s (a, b)) (19)

with T and T ′ t-norms and such that the cardinality of Rs:

|Rs| =
∑

(a,b)∈supp(Rs)

µRs
(a, b) (20)

is maximal. In general, any choice for T and T ′ is allowed. However, for (a, b) ∈

Rs, µRs
(a, b) is in many cases required to be proportional with s(a, b). Such a

proportional effect is obtained by choosing the probabilistic t-norm. Therefor, in

the remainder of this paper, it is assumed that T ′(x, y) = xy, without loss of

generality. In that case, Rs reduces to:

∀(a, b) ∈ supp(Rs) : µRs
(a, b) = T (µA (a) , µB (b)) s (a, b) (21)

The summation in Eq. (20) is a measure for the number of common elements in both

sets, taking into account s. Based on this measure, the comparison indices in the

framework of Sec. 2 are extended. Note that Rs is not bound to be unique. In case

more than one Rs exists, the Rs with minimal |supp(Rs)| is chosen. The relation
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Rs allows for construction of derived sets. It is possible to define the projections

p1(Rs) and p2(Rs) of Rs as follows:

∀a ∈ U : µp1(Rs)(a) = supb∈U µRs
(a, b)

∀b ∈ U : µp2(Rs)(b) = supa∈U µRs
(a, b)

(22)

It is clear that p1(Rs) ⊆ A and p2(Rs) ⊆ B. The projections consist of elements of

A, respectively B, that have a corresponding element in the other set under s. The

membership degree of an element in the projection reflects both the similarity with

the corresponding element and the importance of both elements in the sets they are

contained in. Having these projections, the elements that have no corresponding

element in the other set under s are given by respectively A\p1(Rs) and B\p2(Rs).

The union of these sets (A\p1(Rs) ∪ B\p2(Rs)) fulfills the role of the symmetrical

difference (∆). With the relation Rs and its derived sets at hand, the comparison

indices from Sec. 2 can be redefined. As will become clear, this requires modification

of the axiomatic constraints.

3.1. Inclusion indices

The three axiomatic constraints of an inclusion index I are given in Eq. (5). These

constraints are reviewed in a generalized context. The first constraint states that

inclusion is complete if and only if Ā ∪ B = U . If a similarity measure s is to be

taken into account, this constraint can only be valid if s is strict reflexive (s(a, b) =

1 ⇔ a = b). The second constraint (A ∩ B = ∅ ⇒ I(A,B) = 0) means that

the inclusion index must be 0 if the sets have no elements in common. In the

generalized framework, |Rs| is a measure for the number of the common elements.

Hence, the second axiom translates to: Rs = ∅ ⇒ Is(A,B) = 0. The third constraint

states that an inclusion index must depend on g(Ā ∪ B). However, it is hard to

incorporate s into Ā ∪ B and thus, a complete generalization of inclusion indices

is impossible. Nevertheless, it is shown how specific cases can be generalized. To

do so, a connection is required between the measure of conclusion and the extent

to which elements of A occur in B. This connection can be implemented in two

ways. Firstly, in some cases (depending on the scalar evaluator g and the used set

operations), it is possible to reduce Eq. (6) to an evaluation of A ∩ B to A:

I(A,B) =
g(Ā ∪ B) − g(Ā)

1 − g(Ā)
=
g(A ∩ B)

g(A)
(23)

These inclusion indices can be generalized as follows:

Is(A,B) =
g(p1(Rs))

g(A)
(24)

This represents that the measure of inclusion is an evaluation of the elements of A

that have a corresponding element in B under s against an evaluation of A itself. A
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second way of generalizing inclusion indices is the use of an evaluation of A\p1(Rs).

Formally:

Is(A,B) =
g
(

A\p1(Rs)
)

− g
(

Ā
)

1 − g
(

Ā
) (25)

This second generalization is conceptually closer to the original definition of inclu-

sion indices.

Example 1. Assume we have a universe U = {a, b, c, d, e, f} and a similarity rela-

tion s defined over U . The similarities of the elements in U according to s are listed

in Table 1. Now let us have a look at two fuzzy sets in U : A = {a/1, b/.6, c/.2, d/1, e/1}

and B = {b/1, d/1, f/.4}. In order to calculate the inclusion degree of A into B or

vice versa, we first need to find the optimal mapping Rs for A and B. Using the

minimum t-norm to combine the membership degrees and the product t-norm to

apply the similarities, we find that Rs = {(a, b)/1, (d, d)/1, (e, f)/.16} is the most

optimal A to B mapping with a cardinality of 2.16.

If we chose the uniform probability measure for g, we can apply Eq. (24) to

calculate the inclusion of A into B:

Is(A,B) =
g(p1(Rs))

g(A)
=

|p1(Rs)|

|A|
=

2.16

3.8
≈ 0.57 (26)

The inclusion of B into A gives us this result:

Is(B,A) =
g(p2(Rs))

g(B)
=

|p2(Rs)|

|B|
=

2.16

2.4
= 0.9 (27)

This inclusion index reflects the ratio of the number of elements in the first set that

are mapped to a similar element by Rs to the total amount of elements in this set.

If we choose the infimum (g(Z) = infx∈U µZ(x)) for the set evaluator, we need

to use Eq. (25). We find following results (considering that infx∈U Z̄ = 0 for every

Table 1. Similaties in the example universe.

a b c d e f

a 1 1 .8 0 0 .4

b 1 1 .5 0 0 .2

c .8 .5 1 .2 .4 .7

d 0 0 .2 1 1 0

e 0 0 .4 1 1 .4

f .4 .2 .7 0 .4 1
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normalized set Z):

Is(A,B) =
infx∈U A\p1(Rs) − infx∈U A

1 − infx∈U A
= inf
x∈U

A\p1(Rs) (28)

= inf
x∈U

{b/.6, c/.2, e/.84} = 0.16 (29)

Is(B,A) =
infx∈U B\p2(Rs) − infx∈U B

1 − infx∈U B
= inf

x∈U
B\p2(Rs) (30)

= inf
x∈U

{e/.24} = 0.76 (31)

It is clear that this inclusion index reflects the degree to which all of the elements

of the first set are represented in the second set.

3.2. Partial matching indices

A partial matching index is described in Sec. 2 as an evaluation of the intersection of

two sets. As already mentioned, a generalization of the intersection that takes into

account similarities between elements is not provided here. Instead, the cardinality

of Rs represents an indication of the number of common elements. Hence, it is

possible to make a generalization of partial matching indices. Due to the use of Rs,

the scalar fuzzy set evaluator is bound to be uniform.

As with generalized inclusion indices, the axiomatic constraints of partial match-

ing indices (see Eq. (7)) are reviewed. The first constraint, stating that there is no

partial match if the intersection is empty and vice versa, needs redefinition. In a

generalized context, there is no partial matching if there is no similarity between

elements. Hence, the constraint translates to PMs(A,B) = 0 ⇔ Rs = ∅. The sec-

ond and third constraint can be preserved. The fourth constraint, stating that the

partial matching index depends on g(A ∩B) is replaced by the constraint that the

partial matching index depends on a scalar evaluation of |Rs|. As g must be a uni-

form evaluator, there exists a function gc for which gc(|A|) = g(A). Consequently,

Eq. (8) can be rewritten as:

PM(A,B) =
gc(|A ∩ B)|

f(A,B)
(32)

By replacing |A ∩B| with |Rs|, a generalized partial matching index is obtained:

PMs(A,B) =
gc(|Rs|)

f(A,B)
(33)

An alternative for this generalization is an evaluation of p1(Rs) and p2(Rs) as

follows:

PMs(A,B) = f

(

g (p1(Rs))

g (A)
,
g (p2(Rs))

g (B)

)

. (34)

In that case, f is a commutative [0, 1]2 → [0, 1] mapping.
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Example 2. Using the same setting as in Example 1, we can calculate the partial

matching degree of sets A and B.

Using the uniform probability measure for g and min of cardinalities for f we

derive this result:

PMs(A,B) =
gc(|Rs|)

f(A,B)
=

2.16

2.4
= 0.9 (35)

Note that this result is equal to max(Is(A,B), Is(B,A)) if we use the same set

evaluator for the inclusion.

Using the supremum (g(Z) = supx∈U µZ(x)) we need to apply Eq. (34). We

use max of cardinalities for f . Taking into acount that supx∈U µZ = 1 for any

normalized set Z, we obtain following result:

PMs(A,B) = max

(

supx∈U µp1(Rs)(x)

supx∈U µA(x)
,
supx∈U µp2(Rs)(x)

supx∈U µB(x)

)

= sup
x∈U

µRs
(x) = 1

(36)

3.3. Similarity indices

The similarity of two sets is determined by the differences between two sets, which

is given by A∆B. If element similarities are to be taken into account, A\p1(Rs) ∪

B\p2(Rs), can be used to model the differences between sets. The definition of a

similarity index for sets is extended in the following way:

Definition 2. Let U be a universe and s a similarity measure over U . A similarity

index for (℘̃(U), s) is a relation Ss that satisfies three properties:

• Ss(A,B) = 1 ⇔ A\p1(Rs) ∪ B\p2(Rs) = ∅

• Rs = ∅ ⇔ Ss(A,B) = 0

• Ss(A,B) = Ss(B,A)

(37)

The direct connection between A\p1(Rs) ∪ B\p2(Rs) and the actual similarity is

hard to determine. In the preceding, the union of the two sets is used to normalize

the evaluation of the difference. Using this technique in the generalized context

implies a skew ratio, because on the one hand, equal elements are taken into account

one time in the union. Similar but non-equal elements on the other hand, are both

part of the union. In an extreme case, it is possible that two sets are completely

equivalent with respect to similarity of elements (|Rs| = |A| = |B| and A\p1(Rs) ∪

B\p2(Rs) = ∅), but A ∩B = ∅. When using a uniform evaluator, this problem can

be avoided. The cardinality of the union of A and B is equal to |A|+ |B| − |A∩B|.

For fuzzy sets, this identity is only valid if µA(u) + µB(u) = µA∪B(u) + µA∩B(u),

which is the case for some of the most frequently used combinations of t-norm and

t-conorm: Tmin and Smax, TP and SP (probabilistic), TL and SL (Lucasiewics). It

follows that, in case of a uniform evaluator (again using the function gc) and based

on Eq. (11), a similarity index can be reduced to:

S(A,B) =
gc(|A ∩B|)

gc(|A ∪B|)
(38)
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In this expression, the cardinality of the intersection can be replaced by the num-

ber of common elements |Rs| and the cardinality of the union by the sum of the

cardinalities of the sets, minus the number of common elements:

Ss(A,B) =
gc(|Rs|)

gc(|A| + |B| − |Rs|)
(39)

Example 3. Again using the same setting as in Example 1, we can calculate the

similarity degree of sets A and B using a uniform probability measure as a set

evaluator:

Ss(A,B) =
gc(|Rs|)

gc(|A| + |B| − |Rs|)
=

2.16

3.8 + 2.4 − 2.16
=

2.16

4.04
≈ 0.53 (40)

3.4. Modification with fuzzy quantifiers

The use of scalar fuzzy set evaluators as described in the preceding, yields flexibil-

ity to some extent. A problem with such evaluators is the impossibility to ensure

that an equal ratio of cardinalities in nominator and denominator, always yields

the same result (unless for gc(u) = u/|U |). This is caused by independent evalua-

tion in nominator and denominator. For that purpose, an alternative method for

calculation of the indices is proposed by using fuzzy quantifiers.12 Fuzzy quantifiers

are an extension of classical quantifiers ‘for all’ (∀) and ‘there exists’ (∃), which

stem from predicate logic. Their purpose is to model less exact quantitative con-

cepts like ‘some’, ‘a few’, ‘almost all’, . . . In general, two types of fuzzy quantifiers

are distinguished: absolute quantifiers and relative quantifiers. Absolute quantifiers

are only dependent on the number of elements in a set (i.e. the number of entities

that satisfy a proposition). Relative quantifiers are dependent on the ratio of ele-

ments that satisfy a proposition over the number of elements in the universe. The

distinction between the two types leads to a different mathematical modeling. An

absolute quantifier is modeled as a R → [0, 1] mapping that is applied directly on

the cardinality of a set. A relative quantifier is a [0, 1] → [0, 1] mapping that is

scaled with the size of the universe on which the quantifier is applied. Let Q be an

absolute quantifier, then the similarity of two sets can be expressed by:

SQ,s(A,B) = Q(|Rs|) (41)

It is clear that absolute quantifiers are not very suitable to express the similarity of

two sets, because in general, it is required to measure the number of common ele-

ments with respect to the total number of elements in both sets. Moreover, use of an

absolute quantifier implies that the first constraint for generalized similarity indices

(see Definition 2) can not be satisfied. For the definition of inclusion indices based

on absolute quantifiers, the same difficulties are present, but for partial matching,

absolute quantifiers a extremely useful. For a partial overlap it is sufficient that only

a part of both sets is commonal. It is not required that this number of common

elements is in proportion to the total number of elements in one of both sets or
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in the union. With use of an absolute quantifer Q, the following partial matching

index is obtained:

PMQ,s(A,B) = Q(|Rs|). (42)

Hereby, Q expresses the extent to which the number of common elements in both

sets is sufficient to have a partial match. In order to be a correct indicator, it is

required that Q is a monotonic increasing function.

Unlike absolute quantifiers, relative quantifiers are suitable to define similarity

indices for sets. Assume a relative quantifier Q, then the similarity of two sets is

expressed by:

SQ,s(A,B) = Q

(

|Rs|

|A| + |B| − |Rs|

)

(43)

Hereby, the fraction expresses the ratio of the number of common elements over

the number of different elements, taking into account the similarity measure s.

Quantifier Q evaluates the extent to which this ratio is acceptable. A similarity

index defined as in Eq. (43) satisfies Definition 2 only if Q is a monotonic increasing

function with x = 0 ⇔ Q(x) = 0 and x = 1 ⇔ Q(x) = 1. Relative quantifiers are

also suitable to define inclusion indices. With Q a relative quantifier, an inclusion

index can defined by:

IQ,s(A,B) = Q

(

|Rs|

|A|

)

(44)

This index gives the extent to which the ratio of elements from A with a corre-

sponding element in B over the total number of elements in A is satisfiable. Finally,

a relative quantifier Q also allows for definition of a partial matching index:

PMQ,s(A,B) = Q

(

|Rs|

f(|A|, |B|)

)

. (45)

Hereby, f is a symmetrical monotonic increasing function. In summarization of this

section, the existing framework of comparison indices (Sec. 2) has been general-

ized to take element similarities into account. It has also been shown how fuzzy

quantifiers can be used to obtain comparison indices of the generalized kind.

Example 4. For this example we will use two fuzzy quantifiers Q1 which is an ab-

solute quantifier and Q2 which is a relative quantifier. Their membership functions

are shown in Figure 1. Assume the same setting as in Example 1. Using an absolute

quantifier Q1 to calculate the partial matching degree of sets A and B yields:

PMQ1,s(A,B) = Q(|Rs|) = Q(2.16) = 0.58 (46)

The partial matching degree of sets A and B can also be calculated by using a

relative quantifier Q2. Using min for f yields:

PMQ2,s(A,B) = Q

(

|Rs|

f(|A|, |B|)

)

= Q

(

2.16

2.4

)

= 1 (47)
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Fig. 1. Quantifiers Q1 and Q2.

Use of a relative quantifier also allows for the calculation of inclusion degrees:

IQ2,s(A,B) = Q2

(

|Rs|

|A|

)

= Q2

(

2.16

3.8

)

≈ 0.61 (48)

IQ2,s(B,A) = Q2

(

|Rs|

|B|

)

= Q2

(

2.16

2.4

)

= 1 (49)

and a similarity degree:

SQ2,s(A,B) = Q2

(

|Rs|

|A| + |B| − |Rs|

)

= Q2

(

2.16

2.4 + 3.8− 2.16

)

≈ 0.56 (50)

4. Comparison Indices for Multisets

4.1. Multisets

The generalized comparison indices defined in the previous section are indices for

(fuzzy) sets. In this section it is studied how these ideas can be extended for (fuzzy)

multisets. Multisets are a generalization of regular sets as a specific element can

occur more than once. The concept of a multiset is defined as a fundamental entity

by Yager13 and a formal theory is developed by Blizzard.14,15 Blizard defined multi-

sets as first class entities rather than defining them within the framework of regular

sets. Instead, it is shown by Blizard from a theoretical point of view, that sets are in

fact a special kind of multisets. In this paper, the definitions of Blizard are adopted

and a multiset is a collection of elements, such that each element can occur more

than once. The number of occurrences of an element is called the multiplicity of the

element. Given a universe U and a multiset A consisting of elements from U , the

characteristic function ωA : U → N of A maps each element to it’s multiplicity. For

element containment, the following operators are used:

x ∈ A ⇔ ωA(x) > 0

x /∈ A ⇔ ωA(x) = 0

x ∈n A ⇔ ωA(x) = n

(51)
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Based on the characteristic function it is possible to define the following operators:

∀u ∈ U : ωA∪B(u) = max (ωA(u), ωB(u))

∀u ∈ U : ωA∩B(u) = min (ωA(u), ωB(u))

∀u ∈ U : ωA]B(u) = ωA(u) + ωB(u)

(52)

The cardinality of a multiset is the total number of elements (|A| =
∑

u∈U ωA(u))

and subsets are defined as A ⊆ B ⇔ ∀u ∈ U : ωA(u) ≤ ωB(u). In the case of

multisets, the complement operator can not be defined trivially. With regular sets,

the complement of a set A is defined as the set difference between the universe and

A. The complement is hereby always defined because A ⊂ U by definition. However,

a multiset is not bound to be a subset of the universe U . Several solutions for this

problem have been proposed. Chakrabarty16 assumes that it is always possible

to find a largest multiset, which is called the universal multiset. Jena17 further

developed this idea by defining an upper limit n for the multiplicity of elements. The

universal multiset is then Un with ∀u ∈ U : ωUn
(u) = n. The same problem occurs

when defining fuzzy measures for multisets, which is required if the comparison

indices are to be defined for multisets. In this paper, the following approach is used.

Given a universe U and a multiset U ′ over U . The set of all sub-multisets of U ′,

including ∅ and U ′ itself, is called the multiset space M(U ′). If there exists a natural

number n such that ∀u ∈ U : ωU ′(u) = n, then M(U ′) is called a uniform multiset

space, which is denoted by Mn(U). Using this notation, M∞(U) represents the set

of all multisets.

4.2. Fuzzy multisets

As regular sets can be generalized to fuzzy sets, so can multisets be generalized

to fuzzy multisets. Fuzzy multisets are introduced by Yager,13 who proposed the

following characteristic function for a fuzzy multiset. Let M̃∞(U) denote the set of

all fuzzy multisets drawn from universe U , then A ∈ M̃∞(U) is characterized by:

ψA : U → M∞ ([0, 1]) : x 7→ ψA(x) (53)

With this characteristic function, a multiset over a universe U is defined as a func-

tion from the elements of U to regular multisets over the unit interval. Because

the characterization by Yager yields difficult notations for operators, other chara-

terizations have been proposed.16,18,19 One of them is due to Rocacher.20 Rocacher

defines the generalized α-cut of a fuzzy multiset A as a multiset Aα of elements

that belong to A with a membership degree of at least α:

∀A ∈ M̃∞(U) : ∀α ∈ ] 0, 1 ] : ∀u ∈ U : ωAα
(u) =

∑

d≥α

ωψA(x)(d) (54)

The family of α-cuts (Aα)α∈ ]0,1 ] is a unique characterization of fuzzy multisets.

Similarly, an ω-cut of a fuzzy multiset A is defined as a fuzzy set Aω that contains

all elements with multiplicity at least ω:

∀A ∈ M̃∞(U) : ∀ω ∈ N0 : ∀u ∈ U : µAω(u) = sup{α|ωAα
≥ ω} (55)
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The family of ω-cuts (Aω)ω∈N0
is a unique characterization of fuzzy multisets. We

introduce a new characterization of fuzzy multisets that will be used in the re-

mainder of the paper (Sec. 4.3). A fuzzy multiset A drawn from a universe U is

characterized as a regular multiset drawn from U × [0, 1]. Hence, M̃∞(U) is an

isomorphism of M∞(U × [0, 1]). This characterization models a fuzzy multiset as a

multiset of couples, where each couple consists of an element of U combined with

its membership degree.

4.3. Fuzzy multiset evaluators and multirelations

With the concept of multiset spaces at hand, it is possible to give a formal definition

of scalar fuzzy multiset evaluators:

Definition 3. A function g : M̃(U ′) → [0, 1] is a fuzzy evaluator for the space of

fuzzy multisets M̃(U ′) if and only if it satisfies the following properties:

• g(∅) = 0

• g(U ′) = 1

• A ⊆ B ⇒ g(A) ≤ g(B)

(56)

A fuzzy measure for multisets is a fuzzy evaluator with the domain limited to

regular multisets. Next to evaluators, a second important aspect of the generalized

comparison indices is the relation Rs. As relations are sets, the concept of a relation

can be generalized to the concept of a multirelation, which is, as far as the authors

know, not introduced anywhere in literature. A binary relation between two sets A

and B is a subset of the cartesian product A × B. Therefor, in order to define a

multirelation, the cartesian product of multiset is first defined:

Definition 4. Let A and B be two multisets with universes U and V . The cartesian

product A × B is a multiset with universe U × V . The characteristic function of

A×B is given by:

ωA×B : U × V → N : (a, b) 7→ ωA×B(a, b) = ωA(a)ωB(b) (57)

Based on Definition 4, the definition of a multirelation is given:

Definition 5. A multirelation between two multisets A and B is a subset of A×B

A multirelation R ⊆ A × B is called functional if the following two properties are

satisfied:

• ∀(a, b) ∈ R : ωR(a, b) = ωA(a)

• ((a, b) ∈ R ∧ (a, b′) ∈ R) ⇒ (b = b′)
(58)

A functional multirelation R ⊆ A×B is injective if:

((a, b) ∈ R ∧ (a′, b) ∈ R) ⇒ (a = a′) (59)
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A functional multirelation R ⊆ A×B is surjective if:

∀b ∈ B : ωB(b) ≤
∑

(a,b)∈R

ωA(a) (60)

A bijective multirelation is a functional multirelation that is both injective and

surjective. A one-to-one multirelation is a relation for which each element of one

set, is connected to at most one element of the other set:
(

∀a ∈ A : ωA(a) ≥
∑

b∈B

ωR(a, b)

)

∧

(

∀b ∈ B : ωB(b) ≥
∑

a∈A

ωR(a, b)

)

(61)

A complete one-to-one relation is a one-to-one relation such that: |R| = |A| = |B|.

A complete one-to-one relation that is functional, is a bijection.

4.4. Comparison indices

The concepts of (i) a fuzzy evaluator for (fuzzy) multisets and (ii) a multirelation

can now be used to define generalized comparison indices for multisets. Only the

case of similarity indices is treated here. Inclusion indices and partial matching in-

dices for (fuzzy) multisets can be obtained in a similar manner. Several approaches

to define comparison indices for multisets are possible and the preferred approach

depends on the application. The first and most obvious approach is to consider dif-

ferent instances of the same element as separate elements. Similarity indices based

on Eq. (10) for multisets can be obtained by using generalized definitions of in-

tersection, union (and the derived ∆) en fuzzy evaluators. Extensions of similarity

indices that are based on a similarity measure s for elements are obtained by using

a multirelation instead of a regular relation. Given two fuzzy multisets A and B in

the multiset space M(U ′) over U and a similarity measure s over U , it is possible

to construct a one-to-one multirelation Rs in (A× [0, 1])× (B × [0, 1]) such that:

C =
∑

(a,b)∈Rs

T (µA(a), µB(b)) s(a, b) (62)

is maximized. Hereby, T is a t-norm. Note that Rs is not a fuzzy multirelation.

Instead, the new characterization of fuzzy multisets is used for elegant notation of

the amount of common elements. As Rs is a one-to-one relation, each combination of

an element with a membership degree in a fuzzy multiset, is taken into account one

time maximally. The amount of common elements is now reflected by C instead

of the cardinality of Rs. The similarity of two fuzzy multisets A and B is then

calculated as:

Ss(A,B) =
C

|A| + |B| − C
(63)

This comparison method is suitable if each element of a multiset can be considered

independent, even if some elements are identical. The multiplicity of elements is not
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explicitly taken into account when calculating the similarity of two multisets. The

following example illustrates this:

Example 5. Assume a universe U = {a, b, c} on which three multisets are de-

fined: A = {a, b, b, b, b}, B = {a, a, a, b, b} and C = {a, b, b, c, c}. Let s be a simi-

larity measure over U such that s(a, b) = s(b, c) = λ. For calculation of Ss(A,B),

the optimal one-to-one relation is Rs,1 = {(a, a)/1, (b, a)/λ, (b, a)/λ, (b, b)/1, (b, b)/1}.

For calculation of Ss(A,C), the optimal one-to-one relation is Rs,2 = {(a, a)/1,

(b, c)/λ, (b, c)/λ, (b, b)/1, (b, b)/1}. Application of Eq. (63) yields that Ss(A,B) =

Ss(A,C) = 3+2λ
7−2λ .

The second way of constructing comparison indices is to take the multiplicity of

elements into account for calculation of multiset similarity. In that case, identical

elements are considered as a group and the multiplicity determines the size of the

group. Let us first study the case of regular multisets and next the case of fuzzy

multisets. With regular multisets, it follows that the multiplicity must be taken into

account when calculating the similarity between elements. In order to achieve this,

a similarity measure over U × N is constructed. Such a similarity measure can be

constructed based on a similarity measure s1 over U and a similarity measure s2
over N:

s ((a, ωA (a)) , (b, ωB (b))) = f (s1 (a, b) , s2 (ωA (a) , ωB (b))) (64)

with f a monotonic increasing function such that f(0, 0) = 0 and f(1, 1) = 1.

Triangular norms are good choices for f , but use of a uninorm or an averaging

function is also possible. Calculation of the similarity of two multisets A and B

over U is then implemented by using the comparison method for sets taking into

account a similarity measure for elements (Eq. (39)). The comparison of multisets

is translated to the comparison of sets {(a, ωA(a))|a ∈ A} and {(b, ωB(b))|b ∈ B}.

Example 6. Assume the same setting of Example 5. The multisets can be denoted

as A = {(a, 1), (b, 4)}, B = {(a, 3), (b, 2)} and C = {(a, 1), (b, 2), (c, 2)}. Assume a

similarity measure s2 over N such that:

s2(n,m) =
1

1 + |n−m|
(65)

and let f be the product t-norm. If it is assumed that λ > 2/3,

then for the calculation of Ss(A,B), the optimal relation is Rs,1 =

{((a, 1), (b, 2))/λ/2, ((b, 4), (a, 3))/λ/2}. For the calculation of Ss(A,C), the opti-

mal relation is Rs,2 = {((a, 1), (a, 1))/1, ((b, 4), (b, 2))/1/3}. Application of Eq. (39)

yields:

Ss(A,B) =
|Rs,1|

|A| + |B| − |Rs,1|
=

λ

4 − λ
(66)

Ss(A,C) =
|Rs,2|

|A| + |C| − |Rs,2|
=

4

11
(67)
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which means that Ss(A,B) 6= Ss(A,C) due to the fact that λ ≤ 1. This example

thus illustrates how the multiplicity is taken into account to calculate multiset

similarity.

For the case of fuzzy multisets, Eq. (64) is generalized by replacing multiplicity of

an element a with the sum of membership degrees of a. Formally, with A and B two

fuzzy multisets, s1 a similarity measure over U and s2 a similarity measure over R:

s′
((

a,
∑

µA(a)
)

,
(

b,
∑

µB(b)
))

= f
(

s1(a, b), s2

(

∑

µA(a),
∑

µB(b)
))

. (68)

With this similarity measure s′, fuzzy multisets are treated as L-fuzzy sets. More

specific, the different membership degrees are summed up to one membership degree

which is not bound to be an element of [0, 1].

5. Conclusion

Comparison of collections is a research topic with many applications in diverse areas

of expertise. This paper focuses on the generalization of three types of comparison

indices for fuzzy sets: inclusion indices, partial matching indices and similarity in-

dices. The generalization allows to account for similarities between elements. It is

shown how fuzzy quantifiers can be used to define comparison indices. Next, the

comparison indices are also defined for (fuzzy) multisets. Therefor, fuzzy evaluators

for multisets and multirelations are introduced. An alternative characterization of

fuzzy multisets is required to allow construction of comparison indices for fuzzy

multisets. Two approaches for multiset comparison are considered. In the first ap-

proach, each instance of an element is considered as a separate element, which occurs

independently of other instances. The second approach considers groups of element

instances and the groups are compared, rather than single element instances. In the

case of fuzzy multisets, the membership degrees are summed up to one member-

ship degree, possibly not an element of [0, 1]. Hence, fuzzy multisets are reduced to

L-fuzzy sets.
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