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THE CONCEPT OF MULTISET 

by G. P. MONRO in Sydney, Australia’) 

1. Introduction 

Multisets have been used in mathematics ([4, p. 6361), computer science ([l]), and 
logic ([S]). Definitions for various concepts involving multisets have been given by 
KNIJTH [4, p. 4641 and HICKMAN [2]; however these definitions tend to be given in 
a rather ad hoc fashion, and indeed HICEMAN states that he has chosen his definitions 
t o  fit results already used by those who have worked with multisets. There is of course 
nothing wrong with this, but if the concept of multiset is a reasonable one there should 
be some underlying idea which leads naturally to  the various definitions. It is the 
contention of this paper that the intuitive concept of multiset in fact contains two 
underlying ideas, and that these ideas should be separated. One of the resulting con- 
cepts is more set-like than the other, and the name “multiset” has been appropriated 
for this concept; the other concept is more numeric in character and has been named 
“multinumber ”. It is hoped that distinguishing the concepts “multiset ” and “multi- 
number” will clear up some unsatisfactory features in previous treatments of multisets. 

In  this paper most attention is paid to the concept “multiset”, as it appears to  be 
more fundamental. The multisets (in the sense of this paper) form a category MuC 
in a natural way, and this fact is used to generate definitions for multiset concepts 
by applying category-theoretic definitions to Mirl. This is done in Section 2. I n  Sec- 
tion 3 multinumbers are discussed and compared with multisets. Finally Section 4 
contains some further remarks about the category Mul. 

Most of the category-thebretic terminology used is taken from MACLANE’S book [5].  

2. Xultisets 
Intuitively a multiset is like a set, but may have repeated occurrences of elements. 

Thus [a, b] and [a,  a ,  b] are distinct multisets (where square brackets are used to  in- 
dicate that what is being considered is a multiset, not an ordinary set like {a, b } ) .  
We introduce a change of view, and regard [a, a ,  b ]  as being really of the form [a, a’, b ] ,  
where a and a‘ are different objects of the same sort, whereas b is of a different sort 
from a and a’. This new viewpoint may perhaps be seen as not doing justice to the 
intuitive idea of multiset; another approach is discussed in Section 3. The viewpoint 
of the present section leads to the following formal definitions. 

Def in i t ion  2.1. A rnultiset X is a pair ( X , ,  p ) ,  where X ,  is a set and e an equiv- 
alence relation on X , .  The set X ,  is called the field of the multiset. Elements of X ,  

l )  The final version of this paper was written at the University of Heidelberg while the author 
held a Fellowship from the Alexander von Humboldt-Stiftung of the Federal Republic of Germany. 
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in the same equivalence class will be said to  be of the same sort; elements in different 
equivalence classes will be said t o  bc of different sorts. 

D e f i n i t i o n  2.2 .  Let X = ( X , ,  Q) and Y = ( Y o ,  a )  be multisets. A morphism of 
inultisets is a function f :  X, + Y o  which respects sorts ; that  is if x,  x’ E X ,  and XQX’, 
then f ( x )  uf(x’). 

We generally write f :  X + Y for a multiset morphism, suppressing explicit mention 
of X ,  and Y o .  (If a multiset X is mentioned, its field will always be called X ,  .) The 
category of multisets and multiset morphisms will be denoted Mu[. I n  this section 
we consider what some basic definitions of category theory come to  in the  category 
Mul. 

P r o p o s i t i o n  2.3. Let X = ( X , ,  Q )  and Y = ( Y o ,  a )  be multisets. Let f :  X -+ Y 
be a rnultiset morphism,; we write f :  X ,  -+ Y o  for the function between the fields. Then 

(i) f : X -+ Y is  a monomoiphism in Mu[ iff f :  X ,  -+ Yo i s  one-to-one; 
(ii) f :  X -+ Y i s  a n  ppiwhorphism in Mu1 iff f :  X ,  -+ Y o  i s  onto; 

(iii) f : X -+ Y is a n  isomorphism in Mu1 iff f :  X ,  -+ Y o  is a bijection and also has 
the property that xpx’ iff f (x)  af(s‘). 0 

As an  example consider f :  [a,  b] -+ [ c ,  c’], where a and b are of different sort’s, c and 
c‘ arc of the same sort. / ( a )  = c and f(b) = c’. Then f is a multiset morphism, and is 
both a monomorphisni and an epimorphism, but not an isomorphism. (When elements 

are considered, elements of distinct sorts will generally be denoted by 
distinct letters, and elements of the same sort will be denoted by the same letter, dashes 
distinguishing different elements of that  sort.) 

nxiders the SCHRODER-BERNSTEIN theorem in the case of multisets. 
the SCHRODER-BERNSTEIN theorem asserts that  if f :  X + IT a,nd 

g :  Y -+ X are both one-to-one, then there is a bijection between X and Y .  The cor- 
responding result fails for multisets in general, and we may use an example similar to  
HICKMAN’S to show this (though HICKMAN’S definitions of “multiset ” and “multiset 
morphism” differ from the ones used here). 

E x a m p l e  2.4. Let X be the multiset [xl, x 2 ,  x i :  x 3 ,  : x 3 ,  x 3 ,  . . .] (with n “copies” 
of xnr and x,,, , x,, being of different sorts if m + n) and Y the multiset kyl , y; , yz . y; , 
y:, y3, y j ,  yy, y;”, . . .] (with TL + 1 copies of y,,). Define f :  X -+ Y by f ( @ )  = yf) 
and g:  Y -+ X by g(yf)) = x t l l .  Then f and g are both monomorphisms, but clearly 
there is no isomorphjsm betwecn X and Y .  

It is also possible to  give a counter-example to  the SCHRODER-BERNSTEIN theorem 
involving multisets with only a finite number of sorts, there being infinitely many 
elements of some sorts. The SCHRODER-BERNSTEIN theorem does hold for finite multi- 
sets, that  is multisets with finite fields. 

I I t  

P r o p o s i t i o n  2.5. 

(i) The initial object of Mul is the empty set together with the empty equivalence relation. 

(ii) The artesian product X x Y of two multisrts X = ( X , ,  Q )  and Y = ( Y o ,  c) 
has as field the product set X ,  x Yo ; the equivalence relation relates (xl , yl) and (r2 yz) 
iff both x l p 2  and yluy,. 
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(iii) The coproduct X u Y of X = ( X , ,  Q) and Y = ( Y o ,  a) has as field X ,  w Y o  
(the disjoint union of X ,  and Y o )  and equivalence relation z, where: if a ,  b E X ,  w Y o ,  
then azb iff either a ,  b E X ,  and aeb or a ,  b E Y o  and aob. [7 

It seems reasonable to  call the initial object of Mu1 the empty multiset, and to denote 
it by 0. It also seems reasonable to call X u Y the disjoint union of X and Y .  

Subobjec ts .  The ordinary notion of subobject appears not t o  be very useful: for 
example m :  [a, b] -+ La, a’] where m(a)  = a ,  m(b) = a’ is a monomorphism and so 
determines a subobject. We get a better notion by considering only certain mono- 
morphisms. 

A strong monomorphism m:  A -+ B is a monomorphism such that if e :  C -+ D is an 
epimorphism and f :  C -+ A ,  g :  D + B are such that ge = mf, then there is u:  D + A 
such that ue = f and mu = g. Diagrammatically, 

e 

In  Mu1 a strong monomorphism f :  X + Y is a monomorphism such that if a,  b E X  
and f (a )  and f(b) are of the same sort, then a and b are of the same sort. We define 
a strong subobject to be an equivalence class of strong monomorphisms, the equivalence 
being defined in the same way as for ordinary subobjects. 

Defini t ion 2.6. Let X = { X , ,  e) be a multiset. A submultiset Y E X is a multi- 
set of the form ( Y o ,  a) where Yo is a subset of X ,  and a is p restricted to Yo .  

It is not hard to see that in Mui every strong subobject of X is determined by a 
unique submultiset (in the sense above) of X .  So the notion of strong subobject gives 
a satisfactory notion of “submultiset”. We also note that the empty multiset 0 is 
the smallest strong subobject of every multiset. 

Let 2 be an object in an arbitrary category. If X and Y are strong subobjects of 2 
the strong union of X and Y is defined to be the least strong subobject of Z greater 
than or equal to both X and Y (in the partial ordering on strong subobjects), provided 
such a least strong subobject exists. The ordinary intersection of strong subobjects is 
always strong. 

P ropos i t i on  2.7. Let X and Y be submultisets of Z.  Define X u  Y and X n Y to 
be the submultisets of Z with fields X ,  v Yo and X ,  n Y o ,  respectively. Then X u Y is 
the strong union of X and Y ,  and X n Y is the intersection of X and Y .  [7 

There seems to be no point in trying to form the union of multisets which are not 
submultisets of the same multiset : for example, what would be the union of ( ( a ,  b} ,  p) 
and ( { a ,  b } ,  a). where apb but it is not the case that aeb? 

Complementation of multisets presents no difficulties. Let X be a submultiset of 2 ;  
let 2 - X be the submultiset of 2 with field 2, - X, .  

Propos i t i on  2.8. The strong union of X and Z - X is Z ;  the intersection of X and 
Z - X i s @ .  I-J 
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Let Z be a multiset. The collection of submultisets of 2 is in bijection with the col- 
lection of (ordinary) subsets of the field Z, of 2, and the behaviour of the submulti- 
sets of 2 under the operations v, A and - of Propositions 2.7 and 2.8 is exactly the 
same as that of the subsets of 2, under the corresponding operations for subsets. 
Thus the operations u, A and - for submultisets enjoy all of the properties of the 
corresponding operations for subsets. I n  particular the collection of all the subniulti- 
sets of 2 forms a complete Boolean algebra. 

Exponen t i a t ion .  The category Mu1 is Cartesian closed: if X = ( X o ,  Q )  and 
Y = ( Y o ,  a} are multisets, then Yx may be taken to be the multiset with field the 
set of all multiset morphisms from X to Y and equivalence relation z. where f t y  iff 
x l ~ z 2  implies f ( z l )  ag(z,) for all xl, x2 E X,.  

Mu1 also has a strong subobject classifier Q, which may be taken to be any multi- 
set of the form [a, a’] (with a and a’ of the same sort). Given any multiset X ,  we may 
form Qx,  which should play the r6le of a “power multiset”. 

Propos i t ion  2.9. Let X be a multiset. Define PX (the power multiset of X )  to be 
the multiset with field all the submultisets of X ,  and with equivazence relation such that 
every pair of elements in the field are related ( i  e. PPX has only one sort). Then .”PX g RX. 

An analogue of CANTOR’S theorem now holds for multisets. there is a nionomor- 
phism X -+ BX, but no nionomorphism B X  -+ X .  The definition of B X  seems rather 
counter-intuitive, and is the first concept we have encountered for multisets u hich i.i 
not a gencrzlization of the corresponding concept for ordinary sets. Nonethelehs the 
definition of B X  arises naturally from those of 52 and “submultiset ”. 

The definition of “submultiset” in Definition 2.6 is not the only possible gener a 1’ ma- 
tion of the concept of subset to Mu1 Another one is the following. 

Def in i t ion  2.10. Let 2 be a multiset. A replete subwrultiset X of Z is a submulti- 
set X of Z such that if z E X and z‘ E Z and z, z‘ are of the same sort, then z‘ E X .  
That is, if X contains one element of a given sort, then it must contain all the elements 
of that sort in Z. 

Let us now define 2 to be the multiset [0, 13, where 0 and 1 are of different - , oh  
Then 2 is a “replete submultiset classifier”. We may define the “replete power multi- 
set” W X  to be the multiset with field all the replete submultisets of X ,  and with 
equivalence relation such that every element of 9X is of a different sort. Then 9X 
is isomorphic to 2x, and directly generalizes the ordinary notion of power set. How- 
ever “submultiset” seems to be a better notion than “replete submultiset”. 

Another definition involving multisets is a form of “disjoint union ” differing from 
that in Proposition 2.5. 

Defin i t ion  2.11. Let X and Y be submultisets of 2 = (Z,, Q ) .  X Y is the hub- 
multiset with field X ,  x (0) v Y o  x (1) and equivalence relation z, where 

if x1 , x2 E X ,  then (zl , 0) z<x2, 0) iff . r l p 2 ,  

if ?!I > Y2 E yo then (Y13 1) z(Y29 1 )  iff Yl@YZ> 
if .x E X ,  and y E Y o  then (x.O)z(y, 1) iff x ~ y  

and (y, 1) z(x, 0) iff q y .  
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Note that X f Y need not be a submultiset of 2. For example, if 2 = [a, b,  c ] ,  
X = [a, b]  and Y = [b, c], then 

X f Y = [<a, O ) ,  ( b ,  O ) ,  ( 6 ,  I), ( c ,  1)1 

which is of the form [a, b ,  b’, c ] .  The notation X f Y is KNUTH’S ([4, p. 4541). 

All the concepts in this section except those of Definitions 2.10 and 2.11 arise nat- 
urally out of general category theory and make good sense for multisets. This suggests 
that the category Mu1 is a reasonable explication of the notion of multiset. The con- 
cepts of Definitions 2.10 and 2.1 1 can be treated category-theoretically : further discus- 
sion is deferred until Section 4. 

3. Multinumbers 

A view of multisets which differs from that in Section 2 is that a multiset like [a, a ,  b]  
is really a set where the elements are labelled with numbers, thus: {aZ, b l } .  (We may 
regard a and b as.sorts in the sense of Section 2.) This view is arguably closer to the 
intuitive conception of multiset. In  this section we restrict ourselves to multisets in 
which each element occurs only a finite number of times. This is not an essential 
restriction, and can be removed in what follows by replacing N by the collection of 
all cardinal numbers (including infinite cardinals). The view that a multiset is a set 
with the elements labelled by numbers can be formulated in several more or less 
equivalent ways, one of which is the following. Let Y be the collection of all the sorts 
which can occur in multisets. 

Def in i t i on  3.1. A multinumber is a function from Y to N. 

To set theorists this definition may have an air of illegitimacy about i t ;  we discuss 
this point a t  the end of the section. If f is a multinumber, a E Y and f(a) = 0, this 
is interpreted as saying that a does not occur in f .  Clearly f could be replaced by a 
smaller object carrying the same information, for example f restricted to the set 
{a E 9’: / ( a )  > O } .  However Definition 3.1 is convenient notationally. 

The collection of all multinumbers may be written N”. N has operations + and * 

defined on it, and hag an ordering consistent with these operations. Furthermore the 
ordering is it lattice order (with no greatest element), the lattice operations being max 
and min. All this can be expressed by saying that N is a lattice-ordered semiring (where 
the “semi” part means that additive inverses do not exist). N” is also a lattice-ordered 
semiring, the concepts in N” being defined coordinate-wise, as follows. 

Def in i t i on  3.2. Let f and g be multinumbers. 

(i) We say f g if f (a)  g(a) for all a E 9. 
(ii) f + g is the multinumber given by (f + g) (a)  = / (a )  + g(a) for all a E 9’. 
(iii) f - g is given by (f - g) (a)  = / (a )  * g(a). 

(iv) max(f, g )  is given by (max(f, 9)) ( a )  = max(f(a), da) ) .  

(v) min(f, g) is given by (min(f, 9))  (a) = min(f(a), g(a)). 
(vi) If f 6 g as in (i), define g - f by (g - f )  (a)  = g(a) - f (a)  for all a E Y.  
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The ordering given in (i) above is of course only a partial ordering. Relationships 
valid for N, such as the distributive law, will continue to  be valid for the concepts 
of Definition 3.2. 

Since Ny inherits much of its structure from N it seems reasonable to call the ele- 
ments of N multinumbers. There docs not seem to be any particular point in trying 
to view N” as a category; rather it should be considered as a partially ordered algebra. 
The elements of NY should thus behave more like numbers than sets. 

A multiset (in the sense of Section 2) has an  associated multinumber defined in thcx 
evident way: for example [a, a’, b] has associated multinumber f ,  where / ( a )  = 2, 
f (b)  = 1 and f(c) = 0 for all c in Y distinct from a and b.  We write X #  for the multi- 
number associated with the multiset X. Some of the concepts in Definition 3.2 can 
be regarded as being induced by operations on multisets. Thus, if X is a submultiset 
of Y ,  then X #  5 Y#  in the sense of Definition 3.2 (i), and the operation X f Y of 
Definition 2.11 induces the addition operation of Definition 3.2 (ii). The product 
X x Y of Proposition 2.5 does induce an operation on multinumbers, but i t  is not a 
coordinate-wise operation and so is quite different from the operation of Defini- 
tion 3.2 (iii). However some operations on multisets do not induce operations on 
multinumbers. This is true in particular of the operations of union, intersection and 
complement of Propositions 2.7 and 2.8. Conversely, some operations on multinumhers 
arc not induced by any operations on multisets. This is true of the max, min and sub- 
traction operations of Definition 3.2 parts (iv), (v) and (vi). 

Some of the difficulties with the theory of multisets seem to  come from the use of 
a rather indiscriminate mixture of what are here distinguished as multiset concepts 
and multinumber concepts. Thus what HICKMAN [2] calls “multisets ” are actually 
rnultinumbers in the terminology of the present paper, but HICKMAN calls the max. 
min and subtraction operations of Definition 3.2 “union”, “intersection” and “corn- 
plement ” respectively, and compares these operations with the operations on sets which 
have the same names. However the operations of Definition 3.2 are more like opera- 
tions on numbers than operations on sets. Another paper which uses multinumbers 
extensively (again under the name “multisets”) is that of MEYER and MCROBBIE [6]. 
MEYER and MCROBBIE consider several concepts, mostly defined coordinate-wise. and 
including the concepts of Definition 3.2 parts ti), (ii) and (vi) (under different names). 
Although MEYER and MCROBBIE use the name “multiset” they are quite clear that 
the properties they use are basically arithmetical, and close their paper with a call to 
add the other natural numbers to  the 0 and 1 of Boolean algebra, suggesting that ex- 
cessive reliance on Boolean-algebraic properties has been somewhat crippling. From 
the point of view of the present paper, Boolean properties should apply to  multisets 
(and do: see the discussion after Proposition 2.8), while properties like those of num- 
bers should apply to  multinumbers. 

The discussion above may be summed up by the statement that the concept of 
multinumber is related to that of multiset in the same way that the concept of (car- 
dinal) number is related to the ordinary concept of set. I think that the concept of 
multiset is more fundamental than that of multinumber, but the concept of multi- 
number may be the more useful of the two. In  any event the concepts should be dis- 
tinguished. 
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We close this section with a comment on the set-theoretic illegitimacy mentioned 
after Definition 3.1. In  standard set theory the only elements of sets are again sets, 
so 9' is the collection of all sets. Then Ng is too large for standard set theory to con- 
sider. One way out is to regard 9' as the set of small sets in an  appropriate sense (for 
example the set of sets of rank less than some inaccessible cardinal). Another, possibly 
better, solution is to consider only those functions from 9' to N which take value 
zero everywhere exept on a subset of 9'. The content of the present section is not 
alteted, whichever solution is adopted. 

4. Further category-theoretic comments 

The category Mu1 of Section 2 is by no means new, though its identification as the 
category of multisets appears to be. Indeed Mul is equivalent to the category whose 
objects are epimorphisms in Set (and where an arrow from f to g is a commutative 
square with f and g as the vertical sides). However another approach to Mu1 is to 
regard the individual multisets as categories, which indeed they are: if X is a multi- 
set and a ,  b E X, there is one arrow from a to b if a and b are of the same sort, and 
no arrows from a to b if a and b are of different sorts. In  fact from the point of view 
of enriched category theory (see the book [3] by KELLY), Mu1 is the category of sym- 
metric categories enriched over 2, where 2 is the two-element linearly ordered set 
regarded as a category, and a symmetric category X enriched over 2 is one such that, 
horn@, y) = hom(y, x) for all 2, y E X. We will not go any further into enriched cate- 
gory theory here, but this shows that there is some point to regarding the individual 
multisets as categories. 

The notions introduced in Definitions 2.10 and 2.11 can be treated from this point 
of view. The notion of replete multiset of Definition 2.10 corresponds to the notion of 
replete full subcategory of a category, where a replete full subcategory is one which, if 
it contains an object also contains all the isomorphs of that object. The operation 
X & Y of Definition 2.11 can be explained as follows. Every functor f :  A + B between 
arbitrary categories can be factored as A 5 C -+ B, where g is a functor which is 
a bijection on objects and h is fully faithful. When A and B are multisets, C is a multi- 
set with the same elements as A ,  but a ,  and a, are of the same sort in C if and only 
if / (a , )  and / ( a z )  are of the same sort in B. Now suppose that we have two multisets X 
and Y which are both submultisets of Z, so that we have strong monomorphisms 
m,: X Z and m y :  Y + Z. These combine to  give a morphism m :  X u Y + Z. 
Factorize this morphism in the way just described int'o X u Y --t C -+ 2. Then C is 
the multiset X f Y .  

h 

The fact that most of the multiset concepts considered in Section 2 generalize the 
corresponding concepts for ordinary sets can be considered from the following view- 
point'. Call a multiset discrete if all its elements are of different sorts. The proeess which 
takes an ordinary set to the obvious discrete multiset is a fully faithful functor D: 
Set + Mul. This functor D has both adjoints: the left adjoint takes a multiset t80 the. 
set of sorts of that multiset, and the right adjoint U takes a multiset to its field. ( lT  itself 
has a right adjoint which takes a set X to the chaotic multdset with X as field, where 
all elements are required to be of the same sort.) Since D has both adjoints, it, preserves 
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all limits and colimits. D also preserves exponentiation. D does not preserve the strong 
subobject classifier (since $2 is not discrete), but  it does take 2 E Set t o  the  replete 
submultiset classifier 2. 

How Set-like is the category Mull One can approach this question in two ways. 
The first is to list properties which Mu1 has in comnion with Set. Thus Mu1 is (small-) 
complete and cocomplete, and Cartesian closed. However Mu1 is not a topos. as not 
every monomorphism is strong. Indeed, although Mu1 has a strong subobject clas:ifier, 
Mu1 is not even a quasitopos, as in  Mu1 strong partial morphisms are not in general 
represented (see WYLER [ 7 ] ) .  From this point of view, then, Mu1 is not very like Set. 
A second approach, however, involves considering not only niultiset morphisins (seen 
as functors), but also the natural transformations between functors. It is easy to s w  

that  if f :  X --+ Y and g: X -+ Y are multiset morphisms, then f and g are naturally 
isomorphic if and only if f ( x )  and g(z) are of t,he same sort for every z E X .  This puts 
an equivalence relation on the set of morphisms from X to  Y .  If we let Mul’ be the 
category with Dhe same objects as Mul, but having equivalence classes of riiult’iset 
rnorphisms as arrows, then Mul‘ z Set. Thus Mu1 can be seen as Set “expantlccl” 
by the equivalence relation; Mu1 indeed appears as a cat,egory of vnultisets. 
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