
Additional
Practice:

Solutions

Oracle Database 10g: PL/SQL Fundamentals APS - 2

Additional Practice 1: Solutions

1. Evaluate each of the following declarations. Determine which of them are not legal and
explain why.

a.

DECLARE
name,dept VARCHAR2(14);

This is illegal because only one identifier per declaration is allowed.

b.

DECLARE
test NUMBER(5);

This is legal.

c.

DECLARE
MAXSALARY NUMBER(7,2) = 5000;

This is illegal because the assignment operator is wrong. It should be :=.

d.

DECLARE
JOINDATE BOOLEAN := SYSDATE;

This is illegal because there is a mismatch in the data types. A Boolean data type cannot be
assigned a date value. The data type should be date.

Oracle Database 10g: PL/SQL Fundamentals APS - 3

Additional Practice 2: Solutions

2. In each of the following assignments, determine the data type of the resulting expression.

a. email := firstname || to_char(empno);

 Character string

b. confirm := to_date('20-JAN-1999', 'DD-MON-YYYY');

 Date

c. sal := (1000*12) + 500

 Number

d. test := FALSE;

 Boolean

e. temp := temp1 < (temp2/ 3);

 Boolean

f. var := sysdate;

 Date

Oracle Database 10g: PL/SQL Fundamentals APS - 4

Additional Practice 3: Solutions

DECLARE

custid NUMBER(4) := 1600;
 custname VARCHAR2(300) := 'Women Sports Club';
 new_custid NUMBER(3) := 500;
BEGIN
 DECLARE
 custid NUMBER(4) := 0;
 custname VARCHAR2(300) := 'Shape up Sports Club';
 new_custid NUMBER(3) := 300;
 new_custname VARCHAR2(300) := 'Jansports Club';
 BEGIN
 custid := new_custid;
 custname := custname || ' ' || new_custname;

 END;
 custid := (custid *12) / 10;

END;
/

3. Evaluate the PL/SQL block given above and determine the data type and value of each of the
following variables, according to the rules of scoping:

a. The value of CUSTID at position 1 is:

 300, and the data type is NUMBER

b. The value of CUSTNAME at position 1 is:

 Shape up Sports Club Jansports Club, and the data type is VARCHAR2

c. The value of NEW_CUSTID at position 1 is:

 500, and the data type is NUMBER (or INTEGER)

d. The value of NEW_CUSTNAME at position 1 is:

 Jansports Club, and the data type is VARCHAR2

e. The value of CUSTID at position 2 is:

 1920, and the data type is NUMBER

f. The value of CUSTNAME at position 2 is:

 Women Sports Club, and the data type is VARCHAR2

1

2

Oracle Database 10g: PL/SQL Fundamentals APS - 5

Additional Practice 4: Solutions
4. Write a PL/SQL block to accept a year and check whether it is a leap year. For example,

if the year entered is 1990, the output should be “1990 is not a leap year.”
Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be
divisible by 400.

 Test your solution with the following years:

SET SERVEROUTPUT ON
DECLARE
 YEAR NUMBER(4) := &P_YEAR;
 REMAINDER1 NUMBER(5,2);
 REMAINDER2 NUMBER(5,2);
 REMAINDER3 NUMBER(5,2);
BEGIN
 REMAINDER1 := MOD(YEAR,4);
 REMAINDER2 := MOD(YEAR,100);
 REMAINDER3 := MOD(YEAR,400);
 IF ((REMAINDER1 = 0 AND REMAINDER2 <> 0)
 OR REMAINDER3 = 0) THEN
 DBMS_OUTPUT.PUT_LINE(YEAR || ' is a leap year');
 ELSE
 DBMS_OUTPUT.PUT_LINE (YEAR || ' is not a leap year');
 END IF;
END;
/

1990 Not a leap year
2000 Leap year

1996 Leap year

1886 Not a leap year
1992 Leap year

1824 Leap year

Oracle Database 10g: PL/SQL Fundamentals APS - 6

Additional Practice 5: Solutions

5. a. For the following exercises, you will require a temporary table to store the results.

 You can either create the table yourself or run the lab_ap_05.sql script that will
create the table for you. Create a table named TEMP with the following three columns:

 CREATE TABLE temp
 (num_store NUMBER(7,2),
 char_store VARCHAR2(35),
 date_store DATE);

b. Write a PL/SQL block that contains two variables, MESSAGE and

DATE_WRITTEN. Declare MESSAGE as VARCHAR2 data type with a length of 35 and
DATE_WRITTEN as DATE data type. Assign the following values to the variables:

Variable Contents

MESSAGE This is my first PL/SQL program
DATE_WRITTEN Current date

 Store the values in appropriate columns of the TEMP table. Verify your results by
 querying the TEMP table.

 SET SERVEROUTPUT ON
 DECLARE
 MESSAGE VARCHAR2(35);
 DATE_WRITTEN DATE;
 BEGIN
 MESSAGE := 'This is my first PLSQL Program';
 DATE_WRITTEN := SYSDATE;
 INSERT INTO temp(CHAR_STORE,DATE_STORE)
 VALUES (MESSAGE,DATE_WRITTEN);
 END;
 /
 SELECT * FROM TEMP;

Column Name NUM_STORE CHAR_STORE DATE_STORE

Key Type

Nulls/Unique

FK Table

FK Column

Data Type Number VARCHAR2 Date

Length 7,2 35

Oracle Database 10g: PL/SQL Fundamentals APS - 7

Additional Practice 6: Solutions

6. a. Store a department number in a substitution variable.
DEFINE P_DEPTNO = 30

 b. Write a PL/SQL block to print the number of people working in that department.
 Hint: Enable DBMS_OUTPUT with SET SERVEROUTPUT ON.

SET SERVEROUTPUT ON
DECLARE

HOWMANY NUMBER(3);
DEPTNO DEPARTMENTS.department_id%TYPE := &P_DEPTNO;

BEGIN
 SELECT COUNT(*) INTO HOWMANY FROM employees
 WHERE department_id = DEPTNO;
 DBMS_OUTPUT.PUT_LINE (HOWMANY || ' employee(s) work for department
number ' ||DEPTNO);
END;
/
SET SERVEROUTPUT OFF

Oracle Database 10g: PL/SQL Fundamentals APS - 8

Additional Practice 7: Solutions
7. Write a PL/SQL block to declare a variable called sal to store the salary of an

employee. In the executable part of the program, do the following:
a. Store an employee name in a substitution variable:
 SET SERVEROUTPUT ON
 DEFINE P_LASTNAME = Pataballa
b. Store his or her salary in the sal variable
c. If the salary is less than 3,000, give the employee a raise of 500 and display the

message “<Employee Name>’s salary updated” in the window.
d. If the salary is more than 3,000, print the employee’s salary in the format,

 “<Employee Name> earns …...………”
e. Test the PL/SQL block for the last names.

Note: Undefine the variable that stores the employee’s name at the end of the script.

DECLARE
 SAL NUMBER(7,2);
 LASTNAME EMPLOYEES.LAST_NAME%TYPE;
BEGIN
 SELECT salary INTO SAL
 FROM employees
 WHERE last_name = INITCAP('&&P_LASTNAME') FOR UPDATE of
 salary;

 LASTNAME := INITCAP('&P_LASTNAME');
 IF SAL < 3000 THEN
 UPDATE employees SET salary = salary + 500
 WHERE last_name = INITCAP('&P_LASTNAME') ;
 DBMS_OUTPUT.PUT_LINE (LASTNAME || '''s salary
 updated');
 ELSE
 DBMS_OUTPUT.PUT_LINE (LASTNAME || ' earns ' ||
 TO_CHAR(SAL));
 END IF;
END;
/
SET SERVEROUTPUT OFF
UNDEFINE P_LASTNAME

LAST_NAME SALARY

Pataballa 4800

Greenberg 12000

Ernst 6000

Oracle Database 10g: PL/SQL Fundamentals APS - 9

Additional Practice 8: Solutions
8. Write a PL/SQL block to store the salary of an employee in a substitution variable. In the

executable part of the program, do the following:
• Calculate the annual salary as salary * 12.
• Calculate the bonus as indicated below:

• Display the amount of the bonus in the window in the following format:
 “The bonus is $………………..”
• Test the PL/SQL for the following test cases:

SET SERVEROUTPUT ON
DEFINE P_SALARY = 5000
DECLARE
 SAL NUMBER(7,2) := &P_SALARY;
 BONUS NUMBER(7,2);
 ANN_SALARY NUMBER(15,2);
 BEGIN
ANN_SALARY := SAL * 12;
IF ANN_SALARY >= 20000 THEN
 BONUS := 2000;
ELSIF ANN_SALARY <= 19999 AND ANN_SALARY >=10000 THEN
 BONUS := 1000;
ELSE
 BONUS := 500;
END IF;
DBMS_OUTPUT.PUT_LINE ('The Bonus is $ ' ||
TO_CHAR(BONUS));
END;
/
SET SERVEROUTPUT OFF

Annual Salary Bonus

>= 20,000 2,000

19,999 - 10,000 1,000

<= 9,999 500

SALARY BONUS

5000 2000

1000 1000

15000 2000

Oracle Database 10g: PL/SQL Fundamentals APS - 10

Additional Practice 9: Solutions
9. a. Execute the lab_ap_09_a.sql script to create a temporary table called emp. Write a

PL/SQL block to store an employee number, the new department number, and the
percentage increase in the salary in substitution variables.

 SET SERVEROUTPUT ON
 DEFINE P_EMPNO = 100
 DEFINE P_NEW_DEPTNO = 10
 DEFINE P_PER_INCREASE = 2

b. Update the department ID of the employee with the new department number, and update

the salary with the new salary. Use the emp table for the updates. After the update is
complete, display the message, “Update complete” in the window. If no matching records
are found, display the message, “No Data Found.” Test the PL/SQL block for the
following test cases.

 DECLARE
 EMPNO emp.EMPLOYEE_ID%TYPE := &P_EMPNO;
 NEW_DEPTNO emp.DEPARTMENT_ID%TYPE := & P_NEW_DEPTNO;
 PER_INCREASE NUMBER(7,2) := & P_PER_INCREASE;
 BEGIN
 UPDATE emp
 SET department_id = NEW_DEPTNO,
 salary = salary + (salary * PER_INCREASE/100)
 WHERE employee_id = EMPNO;
 IF SQL%ROWCOUNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE ('No Data Found');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Update Complete');
 END IF;
 END;
 /
 SET SERVEROUTPUT OFF

EMPLOYEE_ID NEW_DEPARTMENT_ID % INCREASE MESSAGE

100 20 2 Update
Complete

10 30 5 No Data
found

126 40 3 Update
Complete

Oracle Database 10g: PL/SQL Fundamentals APS - 11

Additional Practice 10: Solutions
10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary,

and hire date from the employees table. Process each row from the cursor, and if the
salary is greater than 15,000 and the hire date is greater than 01-FEB-1988, display the
employee name, salary, and hire date in the window.

SET SERVEROUTPUT ON
DECLARE
 CURSOR EMP_CUR IS
 SELECT last_name,salary,hire_date FROM EMPLOYEES;
 ENAME VARCHAR2(25);
 SAL NUMBER(7,2);
 HIREDATE DATE;
BEGIN
 OPEN EMP_CUR;
 FETCH EMP_CUR INTO ENAME,SAL,HIREDATE;
 WHILE EMP_CUR%FOUND
 LOOP
 IF SAL > 15000 AND HIREDATE >= TO_DATE('01-FEB-1988','DD-MON-
 YYYY') THEN
 DBMS_OUTPUT.PUT_LINE (ENAME || ' earns ' || TO_CHAR(SAL)|| ‘
 and joined the organization on ' || TO_DATE(HIREDATE,'DD-
 Mon-YYYY'));
 END IF;
FETCH EMP_CUR INTO ENAME,SAL,HIREDATE;
 END LOOP;
CLOSE EMP_CUR;
END;
/
SET SERVEROUTPUT OFF

Oracle Database 10g: PL/SQL Fundamentals APS - 12

Additional Practice 11: Solutions
11. Create a PL/SQL block to retrieve the last name and department ID of each employee from

the employees table for those employees whose EMPLOYEE_ID is less than 114. From the
values retrieved from the employees table, populate two PL/SQL tables, one to store the
records of the employee last names and the other to store the records of their department IDs.
Using a loop, retrieve the employee name information and the salary information from the
PL/SQL tables and display it in the window, using DBMS_OUTPUT.PUT_LINE. Display these
details for the first 15 employees in the PL/SQL tables.

SET SERVEROUTPUT ON
DECLARE
 TYPE Table_Ename is table of employees.last_name%TYPE
 INDEX BY BINARY_INTEGER;
 TYPE Table_dept is table of employees.department_id%TYPE
 INDEX BY BINARY_INTEGER;
 Tename Table_Ename;
 Tdept Table_dept;
 i BINARY_INTEGER :=0;
 CURSOR Namedept IS SELECT last_name,department_id from employees
WHERE employee_id < 115;
 TRACK NUMBER := 15;
BEGIN
 FOR emprec in Namedept
 LOOP
 i := i +1;
 Tename(i) := emprec.last_name;
 Tdept(i) := emprec.department_id;
 END LOOP;
 FOR i IN 1..TRACK
 LOOP
 DBMS_OUTPUT.PUT_LINE ('Employee Name: ' ||
 Tename(i) || ' Department_id: ' || Tdept(i));
 END LOOP;
END;
/
SET SERVEROUTPUT OFF

Oracle Database 10g: PL/SQL Fundamentals APS - 13

Additional Practice 12: Solutions
12. a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a

 parameter of DATE data type to the cursor and print the details of all the
 employees who have joined after that date.

 SET SERVEROUTPUT ON
 DEFINE P_HIREDATE = 08-MAR-00

b. Test the PL/SQL block for the following hire dates: 08-MAR-00, 25-JUN-97,

28-SEP-98, 07-FEB-99.

 DECLARE
 CURSOR DATE_CURSOR(JOIN_DATE DATE) IS
 SELECT employee_id,last_name,hire_date FROM employees
 WHERE HIRE_DATE >JOIN_DATE ;
 EMPNO employees.employee_id%TYPE;
 ENAME employees.last_name%TYPE;
 HIREDATE employees.hire_date%TYPE;
 HDATE employees.hire_date%TYPE := '&P_HIREDATE';
 BEGIN
 OPEN DATE_CURSOR(HDATE);
 LOOP
 FETCH DATE_CURSOR INTO EMPNO,ENAME,HIREDATE;
 EXIT WHEN DATE_CURSOR%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE (EMPNO || ' ' || ENAME || ' ' ||
 HIREDATE);
 END LOOP;
 END;
 /
 SET SERVEROUTPUT OFF;

Oracle Database 10g: PL/SQL Fundamentals APS - 14

Additional Practice 13: Solutions
13. Execute the lab_ap_09_a.sql script to re-create the emp table. Create a PL/SQL block

to promote clerks who earn more than 3,000 to SR CLERK and increase their salaries by
10%. Use the emp table for this practice. Verify the results by querying on the emp table.
 Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

DECLARE
 CURSOR Senior_Clerk IS
 SELECT employee_id,job_id FROM emp
 WHERE job_id = 'ST_CLERK' AND salary > 3000
 FOR UPDATE OF job_id;
BEGIN
 FOR Emrec IN Senior_Clerk
 LOOP
 UPDATE emp
 SET job_id = 'SR_CLERK',
 salary = 1.1 * salary
 WHERE CURRENT OF Senior_Clerk;
 END LOOP;
 COMMIT;
END;
/
SELECT * FROM emp;

Oracle Database 10g: PL/SQL Fundamentals APS - 15

Additional Practice 14: Solutions
14. a. For the following exercise, you require a table to store the results. You can create the

analysis table yourself or run the lab_ap_14_a.sql script that creates the table
for you. Create a table called analysis with the following three columns:

 CREATE TABLE analysis
 (ename Varchar2(20),
 years Number(2),
 sal Number(8,2));

b. Create a PL/SQL block to populate the analysis table with the information from the

employees table. Use a substitution variable to store an employee’s last name.

 SET SERVEROUTPUT ON
 DEFINE P_ENAME = Austin

c. Query the employees table to find if the number of years that the employee has been
with the organization is greater than five, and if the salary is less than 3,500, raise an
exception. Handle the exception with an appropriate exception handler that inserts the
following values into the analysis table: employee last name, number of years of
service, and the current salary. Otherwise display Not due for a raise in the
window. Verify the results by querying the analysis table. Use the following test
cases to test the PL/SQL block.

Column Name ENAME YEARS SAL

Key Type

Nulls/Unique

FK Table

FK Column

Data Type VARCHAR2 Number Number

Length 20 2 8,2

LAST_NAME MESSAGE

Austin Not due for a raise

Nayer Not due for a raise

Fripp Not due for a raise

Khoo Due for a raise

Oracle Database 10g: PL/SQL Fundamentals APS - 16

Additional Practice 14: Solutions (continued)
DECLARE
 DUE_FOR_RAISE EXCEPTION;
 HIREDATE EMPLOYEES.HIRE_DATE%TYPE;
 ENAME EMPLOYEES.LAST_NAME%TYPE := INITCAP('& P_ENAME');
 SAL EMPLOYEES.SALARY%TYPE;
 YEARS NUMBER(2);
BEGIN
 SELECT LAST_NAME,SALARY,HIRE_DATE
 INTO ENAME,SAL,HIREDATE
 FROM employees WHERE last_name = ENAME;
 YEARS := MONTHS_BETWEEN(SYSDATE,HIREDATE)/12;
 IF SAL < 3500 AND YEARS > 5 THEN
 RAISE DUE_FOR_RAISE;
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Not due for a raise');
 END IF;
EXCEPTION
 WHEN DUE_FOR_RAISE THEN
 INSERT INTO ANALYSIS(ENAME,YEARS,SAL)
 VALUES (ENAME, YEARS, SAL);
END;
/

	Additional Practice: Solutions
	Additional Practice 1: Solutions
	Additional Practice 2: Solutions
	Additional Practice 3: Solutions
	Additional Practice 4: Solutions
	Additional Practice 5: Solutions
	Additional Practice 6: Solutions
	Additional Practice 7: Solutions
	Additional Practice 8: Solutions
	Additional Practice 9: Solutions
	Additional Practice 10: Solutions
	Additional Practice 11: Solutions
	Additional Practice 12: Solutions
	Additional Practice 13: Solutions
	Additional Practice 14: Solutions

