
Copyright © 2009, Oracle. All rights reserved.

Creating Packages

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Describe packages and list their components
• Create a package to group together related variables,

cursors, constants, exceptions, procedures, and functions
• Designate a package construct as either public or private
• Invoke a package construct
• Describe the use of a bodiless package

Copyright © 2009, Oracle. All rights reserved.3 - 3

PL/SQL Packages: Overview

PL/SQL packages:
• Group logically related components:

– PL/SQL types
– Variables, data structures, and exceptions
– Subprograms: Procedures and functions

• Consist of two parts:
– A specification
– A body

• Enable the Oracle server to read multiple objects into
memory at once

Copyright © 2009, Oracle. All rights reserved.3 - 4

Package
specification

Package
body

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Public

Private

Components of a PL/SQL Package

Copyright © 2009, Oracle. All rights reserved.3 - 5

Visibility of Package Components

Procedure A;

public_var

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

local_var

private_var

External
code

Package
specification

Package
body

Copyright © 2009, Oracle. All rights reserved.3 - 6

Developing PL/SQL Packages

Create or edit
package body

and spec

Invoke package
subprograms

Compiler
warnings or errors?

NO

YES
Use the SHOW ERRORS
command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors or warnings
in SQL Developer

View compiler
warnings or

errors

Copyright © 2009, Oracle. All rights reserved.3 - 7

Creating the Package Specification

Syntax:

• The OR REPLACE option drops and re-creates the
package specification.

• Variables declared in the package specification are
initialized to NULL by default.

• All the constructs declared in a package specification are
visible to users who are granted privileges on the package.

CREATE [OR REPLACE] PACKAGE package_name IS|AS
public type and variable declarations
subprogram specifications

END [package_name];

Copyright © 2009, Oracle. All rights reserved.3 - 8

Example of Package Specification: comm_pkg

• STD_COMM is a global variable initialized to 0.10.
• RESET_COMM is a public procedure used to reset the

standard commission based on some business rules. It is
implemented in the package body.

CREATE OR REPLACE PACKAGE comm_pkg IS
std_comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset_comm(new_comm NUMBER);

END comm_pkg;
/

Copyright © 2009, Oracle. All rights reserved.3 - 9

Creating the Package Body

Syntax:

• The OR REPLACE option drops and re-creates the
package body.

• Identifiers defined in the package body are private and not
visible outside the package body.

• All private constructs must be declared before they are
referenced.

• Public constructs are visible to the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Copyright © 2009, Oracle. All rights reserved.3 - 10

Example of Package Body: comm_pkg

CREATE OR REPLACE PACKAGE BODY comm_pkg IS
FUNCTION validate(comm NUMBER) RETURN BOOLEAN IS
max_comm employees.commission_pct%type;

BEGIN
SELECT MAX(commission_pct) INTO max_comm
FROM employees;
RETURN (comm BETWEEN 0.0 AND max_comm);

END validate;
PROCEDURE reset_comm (new_comm NUMBER) IS BEGIN
IF validate(new_comm) THEN
std_comm := new_comm; -- reset public var

ELSE RAISE_APPLICATION_ERROR(
-20210, 'Bad Commission');

END IF;
END reset_comm;

END comm_pkg;

Copyright © 2009, Oracle. All rights reserved.3 - 11

Invoking Package Subprograms

• Invoke a function within the same package:

• Invoke a package procedure from SQL*Plus:

• Invoke a package procedure in a different schema:

CREATE OR REPLACE PACKAGE BODY comm_pkg IS ...
PROCEDURE reset_comm(new_comm NUMBER) IS
BEGIN
IF validate(new_comm) THEN
std_comm := new_comm;

ELSE ...
END IF;

END reset_comm;
END comm_pkg;

EXECUTE comm_pkg.reset_comm(0.15)

EXECUTE scott.comm_pkg.reset_comm(0.15)

Copyright © 2009, Oracle. All rights reserved.3 - 12

Creating and Using Bodiless Packages

CREATE OR REPLACE PACKAGE global_consts IS
mile_2_kilo CONSTANT NUMBER := 1.6093;
kilo_2_mile CONSTANT NUMBER := 0.6214;
yard_2_meter CONSTANT NUMBER := 0.9144;
meter_2_yard CONSTANT NUMBER := 1.0936;

END global_consts;

BEGIN DBMS_OUTPUT.PUT_LINE('20 miles = ' ||
20 * global_consts.mile_2_kilo || ' km');

END;

CREATE FUNCTION mtr2yrd(m NUMBER) RETURN NUMBER IS
BEGIN
RETURN (m * global_consts.meter_2_yard);

END mtr2yrd;
/
EXECUTE DBMS_OUTPUT.PUT_LINE(mtr2yrd(1))

Copyright © 2009, Oracle. All rights reserved.3 - 13

Removing Packages

• To remove the package specification and the body, use
the following syntax:

• To remove the package body, use the following syntax:

DROP PACKAGE package_name;

DROP PACKAGE BODY package_name;

Copyright © 2009, Oracle. All rights reserved.3 - 14

Viewing Packages in the Data Dictionary

The source code for PL/SQL packages is maintained and is
viewable through the USER_SOURCE and ALL_SOURCE tables
in the data dictionary.
• To view the package specification, use:

• To view the package body, use:

SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE';

SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE BODY';

Copyright © 2009, Oracle. All rights reserved.3 - 15

Guidelines for Writing Packages

• Construct packages for general use.
• Define the package specification before the body.
• The package specification should contain only those

constructs that you want to be public.
• Place items in the declaration part of the package body

when you must maintain them throughout
a session or across transactions.

• Changes to the package specification require
recompilation of each referencing subprogram.

• The package specification should contain as few
constructs as possible.

Copyright © 2009, Oracle. All rights reserved.3 - 16

Advantages of Using Packages

• Modularity: Encapsulating related constructs
• Easier maintenance: Keeping logically related functionality

together
• Easier application design: Coding and compiling the

specification and body separately
• Hiding information:

– Only the declarations in the package specification are visible
and accessible to applications.

– Private constructs in the package body are hidden and
inaccessible.

– All coding is hidden in the package body.

Copyright © 2009, Oracle. All rights reserved.3 - 17

Advantages of Using Packages

• Added functionality: Persistency of variables and cursors
• Better performance:

– The entire package is loaded into memory when the package
is first referenced.

– There is only one copy in memory for all users.
– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms of the same name

Copyright © 2009, Oracle. All rights reserved.3 - 18

Summary

In this lesson, you should have learned how to:
• Improve code organization, management, security, and

performance by using packages
• Create and remove package specifications and bodies
• Group related procedures and functions together in a

package
• Encapsulate the code in a package body
• Define and use components in bodiless packages
• Change a package body without affecting a package

specification

Copyright © 2009, Oracle. All rights reserved.3 - 19

Summary

Remove both the package
specification and package body.

DROP PACKAGE

DROP PACKAGE BODY

CREATE [OR REPLACE] PACKAGE
BODY

CREATE [OR REPLACE] PACKAGE

Command

Create (or modify) an existing
package specification.

Remove only the package body.

Create (or modify) an existing
package body.

Task

Copyright © 2009, Oracle. All rights reserved.3 - 20

Practice 3: Overview

This practice covers the following topics:
• Creating packages
• Invoking package program units

