
Copyright © 2009, Oracle. All rights reserved.

Creating Triggers

Copyright © 2009, Oracle. All rights reserved.10 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Describe the different types of triggers
• Describe database triggers and their uses
• Create database triggers
• Describe database trigger-firing rules
• Remove database triggers

Copyright © 2009, Oracle. All rights reserved.10 - 3

Types of Triggers

A trigger:
• Is a PL/SQL block or a PL/SQL procedure associated with

a table, view, schema, or database
• Executes implicitly whenever a particular event takes place
• Can be either of the following:

– Application trigger: Fires whenever an event occurs with a
particular application

– Database trigger: Fires whenever a data event (such as
DML) or system event (such as logon or shutdown) occurs
on a schema or database

Copyright © 2009, Oracle. All rights reserved.10 - 4

Guidelines for Designing Triggers

• You can design triggers to:
– Perform related actions
– Centralize global operations

• You must not design triggers:
– Where functionality is already built into the Oracle server
– That duplicate other triggers

• You can create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

• The excessive use of triggers can result in complex
interdependencies, which may be difficult to maintain in
large applications.

Copyright © 2009, Oracle. All rights reserved.10 - 5

Creating DML Triggers

Create DML statement or row type triggers by using:

• A statement trigger fires once for a DML statement.
• A row trigger fires once for each row affected.

Note: Trigger names must be unique with respect to other
triggers in the same schema.

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON object_name
[[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW
[WHEN (condition)]]
trigger_body

Copyright © 2009, Oracle. All rights reserved.10 - 6

Types of DML Triggers

The trigger type determines whether the body executes for
each row or only once for the triggering statement.
• A statement trigger:

– Executes once for the triggering event
– Is the default type of trigger
– Fires once even if no rows are affected at all

• A row trigger:
– Executes once for each row affected by the triggering event
– Is not executed if the triggering event does not affect any

rows
– Is indicated by specifying the FOR EACH ROW clause

Copyright © 2009, Oracle. All rights reserved.10 - 7

Trigger Timing

When should the trigger fire?
• BEFORE: Execute the trigger body before the triggering

DML event on a table.
• AFTER: Execute the trigger body after the triggering DML

event on a table.
• INSTEAD OF: Execute the trigger body instead of the

triggering statement. This is used for views that are not
otherwise modifiable.

Note: If multiple triggers are defined for the same object, the
order of firing triggers is arbitrary.

Copyright © 2009, Oracle. All rights reserved.10 - 8

…

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a table when
a single row is manipulated:

BEFORE statement
trigger

BEFORE row trigger
AFTER row trigger
AFTER statement trigger

DML statement
INSERT INTO departments

(department_id,department_name, location_id)
VALUES (400, 'CONSULTING', 2400);

Triggering action

Copyright © 2009, Oracle. All rights reserved.10 - 9

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a table when
many rows are manipulated:

BEFORE statement trigger
BEFORE row trigger
AFTER row trigger...
BEFORE row trigger
AFTER row trigger...
AFTER statement trigger

Copyright © 2009, Oracle. All rights reserved.10 - 10

Trigger Event Types and Body

A trigger event:
• Determines which DML statement causes the trigger to

execute
• Can be:

– INSERT

– UPDATE [OF column]

– DELETE

A trigger body:
• Determines what action is performed
• Is a PL/SQL block or a CALL to a procedure

Copyright © 2009, Oracle. All rights reserved.10 - 11

Application

INSERT INTO EMPLOYEES...;
EMPLOYEES table

SECURE_EMP trigger

Creating a DML Statement Trigger

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN

RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' business hours.');

END IF;
END;

Copyright © 2009, Oracle. All rights reserved.10 - 12

Testing SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,

job_id, salary, department_id)
VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,

'IT_PROG', 4500, 60);

Copyright © 2009, Oracle. All rights reserved.10 - 13

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR
(TO_CHAR(SYSDATE,'HH24')

NOT BETWEEN '08' AND '18') THEN
IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||

'only during business hours.');
ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||

'only during business hours.');
ELSIF UPDATING('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal hours.');

END IF;
END IF;
END;

Copyright © 2009, Oracle. All rights reserved.10 - 14

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))

AND :NEW.salary > 15000 THEN
RAISE_APPLICATION_ERROR (-20202,
'Employee cannot earn more than $15,000.');

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.10 - 15

Using OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit_emp_values

AFTER DELETE OR INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

INSERT INTO audit_emp(user_name, time_stamp, id,

old_last_name, new_last_name, old_title,

new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,

:OLD.last_name, :NEW.last_name, :OLD.job_id,

:NEW.job_id, :OLD.salary, :NEW.salary);

END;

/

Copyright © 2009, Oracle. All rights reserved.10 - 16

Using OLD and NEW Qualifiers:
Example Using AUDIT_EMP

INSERT INTO employees
(employee_id, last_name, job_id, salary, ...)
VALUES (999, 'Temp emp', 'SA_REP', 6000,...);

UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;

SELECT user_name, timestamp, ...
FROM audit_emp;

Copyright © 2009, Oracle. All rights reserved.10 - 17

Restricting a Row Trigger: Example

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')
BEGIN
IF INSERTING THEN
:NEW.commission_pct := 0;

ELSIF :OLD.commission_pct IS NULL THEN
:NEW.commission_pct := 0;

ELSE
:NEW.commission_pct := :OLD.commission_pct+0.05;

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.10 - 18

Summary of the Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:

a. Execute all BEFORE ROW triggers.
b. Execute the DML statement and perform integrity constraint

checking.
c. Execute all AFTER ROW triggers.

3. Execute all AFTER STATEMENT triggers.
Note: Integrity checking can be deferred until the COMMIT
operation is performed.

Copyright © 2009, Oracle. All rights reserved.10 - 19

Implementing an Integrity Constraint
with a Trigger

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
AFTER UPDATE OF department_id
ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES(:new.department_id,

'Dept '||:new.department_id, NULL, NULL);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN
NULL; -- mask exception if department exists

END;
/

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Successful after trigger is fired

UPDATE employees SET department_id = 999
WHERE employee_id = 170;
-- Integrity constraint violation error

Copyright © 2009, Oracle. All rights reserved.10 - 20

INSTEAD OF Triggers

Application

INSERT INTO my_view
. . .;

MY_VIEW

INSTEAD OF trigger
INSERT
TABLE1

UPDATE
TABLE2

Copyright © 2009, Oracle. All rights reserved.10 - 21

Creating an INSTEAD OF Trigger

Perform the INSERT into EMP_DETAILS that is based on
EMPLOYEES and DEPARTMENTS tables:

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into NEW_EMPS UPDATE NEW_DEPTS

…
…

1

2 3

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

Copyright © 2009, Oracle. All rights reserved.10 - 22

Creating an INSTEAD OF Trigger

Use INSTEAD OF to perform DML on complex views:
CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id
FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d
WHERE e.department_id = d.department_id;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

Copyright © 2009, Oracle. All rights reserved.10 - 24

Comparison of Database Triggers and
Stored Procedures

Explicitly invokedImplicitly invoked by DML

COMMIT, SAVEPOINT, and
ROLLBACK are not allowed.

Data dictionary contains source
code in USER_TRIGGERS.

Defined with CREATE TRIGGER

Triggers

Defined with CREATE PROCEDURE

COMMIT, SAVEPOINT, and
ROLLBACK are allowed.

Data dictionary contains source
code in USER_SOURCE.

Procedures

Copyright © 2009, Oracle. All rights reserved.10 - 25

Comparison of Database Triggers
and Oracle Forms Triggers

INSERT INTO EMPLOYEES
. . .;

EMPLOYEES table CHECK_SAL trigger

BEFORE
INSERT

row…

Copyright © 2009, Oracle. All rights reserved.10 - 26

Managing Triggers

• Disable or reenable a database trigger:

• Disable or reenable all triggers for a table:

• Recompile a trigger for a table:

ALTER TRIGGER trigger_name DISABLE | ENABLE

ALTER TABLE table_name DISABLE | ENABLE
ALL TRIGGERS

ALTER TRIGGER trigger_name COMPILE

Copyright © 2009, Oracle. All rights reserved.10 - 27

Removing Triggers

To remove a trigger from the database, use the DROP
TRIGGER statement:

Example:

Note: All triggers on a table are removed when the table is
removed.

DROP TRIGGER secure_emp;

DROP TRIGGER trigger_name;

Copyright © 2009, Oracle. All rights reserved.10 - 28

Testing Triggers

• Test each triggering data operation, as well as
nontriggering data operations.

• Test each case of the WHEN clause.
• Cause the trigger to fire directly from a basic data

operation, as well as indirectly from a procedure.
• Test the effect of the trigger on other triggers.
• Test the effect of other triggers on the trigger.

Copyright © 2009, Oracle. All rights reserved.10 - 29

Summary

In this lesson, you should have learned how to:
• Create database triggers that are invoked by DML

operations
• Create statement and row trigger types
• Use database trigger-firing rules
• Enable, disable, and manage database triggers
• Develop a strategy for testing triggers
• Remove database triggers

Copyright © 2009, Oracle. All rights reserved.10 - 30

Practice 10: Overview

This practice covers the following topics:
• Creating row triggers
• Creating a statement trigger
• Calling procedures from a trigger

