
Additional
Practices

Oracle Database 10g: Develop PL/SQL Program Units AP-2

Additional Practices: Overview
These additional practices are provided as a supplement to the course Oracle Database 10g:
Develop PL/SQL Program Units. In these practices, you apply the concepts that you learned
in the course.

The additional practices comprise two parts:

Part A provides supplemental exercises to create stored procedures, functions, packages, and
triggers, and to use the Oracle-supplied packages with SQL Developer as the development
environment. The tables used in this portion of the additional practice include EMPLOYEES,
JOBS, JOB_HISTORY, and DEPARTMENTS.

Part B is a case study that can be completed at the end of the course. This part supplements
the practices for creating and managing program units. The tables used in the case study are
based on a video database and contain the TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER tables.

An entity relationship diagram is provided at the start of part A and part B. Each entity
relationship diagram displays the table entities and their relationships. More detailed
definitions of the tables and the data contained in them is provided in the appendix titled
“Additional Practices: Table Descriptions and Data.”

Oracle Database 10g: Develop PL/SQL Program Units AP-3

Part A
Entity Relationship Diagram

Human Resources:

Oracle Database 10g: Develop PL/SQL Program Units AP-4

Part A (continued)
Note: These exercises can be used for extra practice when discussing how to create
procedures.

1. In this exercise, create a program to add a new job into the JOBS table.
a. Create a stored procedure called NEW_JOB to enter a new job into the JOBS

table. The procedure should accept three parameters. The first and second
parameters supply a job ID and a job title. The third parameter supplies the
minimum salary. Use the maximum salary for the new job as twice the minimum
salary supplied for the job ID.

b. Invoke the procedure to add a new job with job ID 'SY_ANAL', job title
'System Analyst', and minimum salary of 6000.

c. Check whether a row was added and note the new job ID for use in the next
exercise. Commit the changes.

2. In this exercise, create a program to add a new row to the JOB_HISTORY table for an
existing employee.

a. Create a stored procedure called ADD_JOB_HIST to add a new row into the
JOB_HISTORY table for an employee who is changing his job to the new job ID
('SY_ANAL') that you created in exercise 1b.
The procedure should provide two parameters: one for the employee ID who is
changing the job and the second for the new job ID. Read the employee ID from
the EMPLOYEES table and insert it into the JOB_HISTORY table. Make the hire
date of this employee as the start date and today’s date as the end date for this
row in the JOB_HISTORY table.
Change the hire date of this employee in the EMPLOYEES table to today’s date.
Update the job ID of this employee to the job ID passed as parameter (use the
'SY_ANAL' job ID) and salary equal to the minimum salary for that job ID plus
500.
Note: Include exception handling to handle an attempt to insert a nonexistent
employee.

b. Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables
before invoking the ADD_JOB_HIST procedure.

c. Execute the procedure with employee ID 106 and job ID 'SY_ANAL' as
parameters.

d. Query the JOB_HISTORY and EMPLOYEES tables to view your changes for
employee 106, and then commit the changes.

e. Reenable the triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables.
3. In this exercise, create a program to update the minimum and maximum salaries for a

job in the JOBS table.
a. Create a stored procedure called UPD_JOBSAL to update the minimum and

maximum salaries for a specific job ID in the JOBS table. The procedure should
provide three parameters: the job ID, a new minimum salary, and a new
maximum salary. Add exception handling to account for an invalid job ID in the
JOBS table. Raise an exception if the maximum salary supplied is less than the
minimum salary, and provide a message that will be displayed if the row in the
JOBS table is locked.
Hint: The resource locked/busy error number is –54.

Oracle Database 10g: Develop PL/SQL Program Units AP-5

Part A (continued)
b. Execute the UPD_JOBSAL procedure by using a job ID of 'SY_ANAL', a

minimum salary of 7000, and a maximum salary of 140.
Note: This should generate an exception message.

c. Disable triggers on the EMPLOYEES and JOBS tables.
d. Execute the UPD_JOBSAL procedure using a job ID of 'SY_ANAL', a

minimum salary of 7000, and a maximum salary of 14000.
e. Query the JOBS table to view your changes, and then commit the changes.
f. Enable the triggers on the EMPLOYEES and JOBS tables.

4. In this exercise, create a procedure to monitor whether employees have exceeded their
average salaries for their job type.

a. Disable the SECURE_EMPLOYEES trigger.
b. In the EMPLOYEES table, add an EXCEED_AVGSAL column to store up to three

characters and a default value of NO. Use a check constraint to allow the values
YES or NO.

c. Write a stored procedure called CHECK_AVGSAL, which checks whether each
employee’s salary exceeds the average salary for the JOB_ID. The average
salary for a job is calculated from the information in the JOBS table. If the
employee’s salary exceeds the average for his or her job, update his or her
EXCEED_AVGSAL column in the EMPLOYEES table to a value of YES;
otherwise, set the value to NO. Use a cursor to select the employee’s rows using
the FOR UPDATE option in the query. Add exception handling to account for a
record being locked.
Hint: The resource locked/busy error number is –54. Write and use a local
function called GET_JOB_AVGSAL to determine the average salary for a job ID
specified as a parameter.

d. Execute the CHECK_AVGSAL procedure. Then, to view the results of your
modifications, write a query to display the employee’s ID, job, the average salary
for the job, the employee’s salary, and the exceed_avgsal indicator column
for employees whose salaries exceed the average for their job, and finally
commit the changes.

Note: These exercises can be used for extra practice when discussing how to create
functions.

5. Create a subprogram to retrieve the number of years of service for a specific employee.
a. Create a stored function called GET_YEARS_SERVICE to retrieve the total

number of years of service for a specific employee. The function should accept
the employee ID as a parameter and return the number of years of service. Add
error handling to account for an invalid employee ID.

b. Invoke the GET_YEARS_SERVICE function in a call to
DBMS_OUTPUT.PUT_LINE for an employee with ID 999.

c. Display the number of years of service for employee 106 with
DBMS_OUTPUT.PUT_LINE invoking the GET_YEARS_SERVICE function.

d. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to
verify that the modifications are accurate. The values represented in the results
on this page may differ from those that you get when you run these queries.

Oracle Database 10g: Develop PL/SQL Program Units AP-6

Part A (continued)
6. In this exercise, create a program to retrieve the number of different jobs that an

employee worked on during his or her service.
a. Create a stored function called GET_JOB_COUNT to retrieve the total number of

different jobs on which an employee worked.
The function should accept the employee ID in a parameter, and return the
number of different jobs that the employee worked on until now, including the
present job. Add exception handling to account for an invalid employee ID.
Hint: Use the distinct job IDs from the JOB_HISTORY table, and exclude the
current job ID, if it is one of the job IDs on which the employee has already
worked. Write a UNION of two queries and count the rows retrieved into a
PL/SQL table. Use a FETCH with BULK COLLECT INTO to obtain the unique
jobs for the employee.

b. Invoke the function for the employee with the ID of 176.

Note: These exercises can be used for extra practice when discussing how to create
packages.

7. Create a package called EMPJOB_PKG that contains your NEW_JOB,
ADD_JOB_HIST, and UPD_JOBSAL procedures, as well as your
GET_YEARS_SERVICE and GET_JOB_COUNT functions.

a. Create the package specification with all the subprogram constructs as public.
Move any subprogram local-defined types into the package specification.

b. Create the package body with the subprogram implementation; remember to
remove, from the subprogram implementations, any types that you moved into
the package specification.

c. Invoke your EMPJOB_PKG.NEW_JOB procedure to create a new job with the
ID PR_MAN, the job title Public Relations Manager, and the salary
6,250.

d. Invoke your EMPJOB_PKG.ADD_JOB_HIST procedure to modify the job of
employee ID 110 to job ID PR_MAN.
Note: You need to disable the UPDATE_JOB_HISTORY trigger before you
execute the ADD_JOB_HIST procedure, and reenable the trigger after you have
executed the procedure.

e. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

Note: These exercises can be used for extra practice when discussing how to create database
triggers.

8. In this exercise, create a trigger to ensure that the minimum and maximum salaries of a
job are never modified such that the salary of an existing employee with that job ID is
out of the new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE that is fired before every row that is
updated in the MIN_SALARY and MAX_SALARY columns in the JOBS table.
For any minimum or maximum salary value that is changed, check whether the
salary of any existing employee with that job ID in the EMPLOYEES table falls
within the new range of salaries specified for this job ID. Include exception
handling to cover a salary range change that affects the record of any existing
employee.

Oracle Database 10g: Develop PL/SQL Program Units AP-7

Part A (continued)
b. Test the trigger using the SY_ANAL job, setting the new minimum salary to

5,000, and the new maximum salary to 7,000. Before you make the change,
write a query to display the current salary range for the SY_ANAL job ID, and
another query to display the employee ID, last name, and salary for the same job
ID. After the update, query the change (if any) to the JOBS table for the specified
job ID.

c. Using the SY_ANAL job, set the new minimum salary to 7,000, and the new
maximum salary to 18,000. Explain the results.

Oracle Database 10g: Develop PL/SQL Program Units AP-8

Part B
Entity Relationship Diagram

TITLE
#* ID

* title
* description

o rating
o category
o release date

TITLE_COPY
#* ID

* status

RENTAL
#* book date
o act ret date
o exp ret date

MEMBER
#* ID

* last name
o first name
o address
o city
o phone
* join date

RESERVATION
#* reservation date

for

the subject
of

available as

a copy

the subject of

made against

responsible
for

created
for

responsible
for

set up for

Oracle Database 10g: Develop PL/SQL Program Units AP-9

Part B (continued)
In this case study, you create a package named VIDEO_PKG that contains procedures and
functions for a video store application. This application enables customers to become a
member of the video store. Any member can rent movies, return rented movies, and reserve
movies. Additionally, you create a trigger to ensure that any data in the video tables is
modified only during business hours.

Create the package by using SQL Developer and use the DBMS_OUTPUT Oracle-supplied
package to display messages.

The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous
page.

Oracle Database 10g: Develop PL/SQL Program Units AP-10

Part B (continued)
1. Load and execute the /home/oracle/labs/PLPU/labs/buildvid1.sql

script to create all the required tables and sequences that are needed for this exercise.
2. Load and execute the /home/oracle/labs/PLPU/labs/buildvid2.sql

script to populate all the tables created through the buildvid1.sql script.
3. Create a package named VIDEO_PKG with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER
table. For the member ID number, use the sequence MEMBER_ID_SEQ; for the
join date, use SYSDATE. Pass all other values to be inserted into a new row as
parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the
title ID number for the video that a customer wants to rent, and either the
customer’s last name or his member ID number into the function. The function
should return the due date for the video. Due dates are three days from the date
the video is rented. If the status for a movie requested is listed as AVAILABLE in
the TITLE_COPY table for one copy of this title, update this TITLE_COPY
table and set the status to RENTED. If there is no copy available, the function
must return NULL. Then insert a new record into the RENTAL table identifying
the booked date as today’s date, the copy ID number, the member ID number,
the title ID number, and the expected return date. Be aware of multiple
customers with the same last name. In this case, have the function return NULL
and display a list of the customers’ names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video
(available, rented, or damaged) and sets the return date. Pass the title ID, the
copy ID, and the status to this procedure. Check whether there are reservations
for that title and display a message if it is reserved. Update the RENTAL table
and set the actual return date to today’s date. Update the status in the
TITLE_COPY table based on the status parameter passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all the video
copies requested in the NEW_RENTAL procedure have a status of RENTED. Pass
the member ID number and the title ID number to this procedure. Insert a new
record into the RESERVATION table and record the reservation date, member
ID number, and title ID number. Print a message indicating that a movie is
reserved and its expected date of return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception
handler of the public programs. Pass the SQLCODE number to this procedure and
the name of the program (as a text string) where the error occurred. Use
RAISE_APPLICATION_ERROR to raise a customized error. Start with a
unique key violation (-1) and foreign key violation (-2292). Allow the
exception handler to raise a generic error for any other errors.

Oracle Database 10g: Develop PL/SQL Program Units AP-11

Part B (continued)
4. Use the following scripts located in the /home/oracle/labs/PLPU/soln

directory to test your routines:
a. Add two members using sol_apb_04_a_new_members.sql.
b. Add new video rentals using sol_apb_04_b_new_rentals.sql.
c. Return movies using the sol_apb_04_c_return_movie.sql script.

5. The business hours for the video store are 8:00 AM to 10:00 PM, Sunday through
Friday, and 8:00 AM to 12:00 AM on Saturday. To ensure that the tables can be
modified only during these hours, create a stored procedure that is called by triggers on
the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time
against business hours. If the current time is not within business hours, use the
RAISE_APPLICATION_ERROR procedure to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted,
updated, and deleted from the tables. Call your TIME_CHECK procedure from
each of these triggers.

c. Test your triggers.

