Creating Stored Procedures

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe and create a procedure

 Create procedures with parameters

« Differentiate between formal and actual parameters
« Use different parameter-passing modes

 |Invoke a procedure

 Handle exceptions in procedures

« Remove a procedure

ORACLE

1-2 Copyright © 2009, Oracle. All rights reserved.

What Is a Procedure?

A procedure:
* |s atype of subprogram that performs an action
 Can be stored in the database as a schema object
 Promotes reusability and maintainability

ORACLE

1-3 Copyright © 2009, Oracle. All rights reserved.

Syntax for Creating Procedures

« Use CREATE PROCEDURE followed by the name, optional
parameters, and keyword IS or AS.

« Addthe OR REPLACE option to overwrite an existing
procedure.

 Write a PL/SQL block containing local variables,
a BEGIN statement, and an END statement (or END

procedure name).

CREATE [OR REPLACE] PROCEDURE procedure name
[(parameterl [mode] datatypel,
parameter2 [mode] datatype2, ...)]
IS|AS
[local variable declarations; ..]
BEGIN — PL/SQL Block
-- actions;
END [procedure name];

ORACLE

1-4 Copyright © 2009, Oracle. All rights reserved.

Developing Procedures

b Compiler - Log kd
- Project: C:'\Program Files'SaQL Developer 1.1%gl
{23 PROCEDURE ORA41 ADD_JOB_HISTORY (@G
©(E) Error(3 51 PLS-00103: Encourtered thy
7 View errors or warnings
% SQL Plus o in SQL Developer
7 — A
gab B 2zl
= P 22" YES L2 SQL Plus
‘{*:-’% A z Use SHOW ERRORS
= - ‘ command in SQL*Plus
Create or Compiler View compiler
edit warnings or warnings or) 2,
”
procedure err[)rs’P errors PP
sak Use USER/ALL/DBA _
pLL”.. ERRORS Views
. u,:,-'
(oL Lse
sii

ﬂ'h
L -

Execute procedure

ORACLE

1-5 Copyright © 2009, Oracle. All rights reserved.

What Are Parameters?

Parameters:
 Are declared after the subprogram name in the PL/SQL
header
 Pass or communicate data between the caller and the
subprogram

 Are used like local variables but are dependent on their
parameter-passing mode:
— An IN parameter (the default) provides values for a
subprogram to process.
— An OUT parameter returns a value to the caller.

— An IN OUT parameter supplies an input value, which may be
returned (output) as a modified value.

ORACLE

1-6 Copyright © 2009, Oracle. All rights reserved.

Formal and Actual Parameters

 Formal parameters: Local variables declared in the
parameter list of a subprogram specification

Example:

CREATE PROCEDURE raise sal(id NUMBER, sal NUMBER) IS
BEGIN ...

END raise sal;

« Actual parameters: Literal values, variables, and
expressions used in the parameter list of the called
subprogram
Example:

emp id := 100;

raise sal(emp id, 2000)

ORACLE
1-7 Copyright © 2009, Oracle. All rights reserved.

Procedural Parameter Modes

« Parameter modes are specified in the formal parameter
declaration, after the parameter name and before its data

type.
« The IN mode is the default if no mode is specified.

CREATE PROCEDURE procedure(param [mode] datatype)

Modes
r \ al
*| [l 1N (default) > pvl.a"_5
Calling |, | ZZ
environment [out ﬂ/
g) [v our < ’lf.fr

Procedure

ORACLE
Copyright © 2009, Oracle. All rights reserved.

1-8

Using IN Parameters: Example

CREATE OR REPLACE PROCEDURE raise salary

*(1id IN employees.employee id%TYPE,
percent IN NUMBER) °
IS
BEGIN
UPDATE employees
SET salary = salary * (1 + percent/100)

WHERE employee id = id;
END raise salary;

/

EXECUTE raise salary(176,10)

ORACLE

1-9 Copyright © 2009, Oracle. All rights reserved.

Using OoUT Parameters: Example

CREATE OR REPLACE PROCEDURE query emp
»(id IN employees.employee id%TYPE,
name OUT employees.last name%TYPE,
salary OUT employees.salary%TYPE) IS

BEGIN
SELECT last name, salary INTO name, salary
FROM employees

WHERE employee id = id;
END query emp;

DECLARE
emp name employees.last name%TYPE;
emp sal employees.salary%TYPE;

BEGIN ‘
query emp (171, emp name, emp sal); ...
END ;

ORACLE

1-10 Copyright © 2009, Oracle. All rights reserved.

Viewing OUT Parameters

 Use PL/SQL variables that are printed with calls to the
DBMS OUTPUT.PUT LINE procedure.

SET SERVEROUTPUT ON

DECLARE

emp name employees.last name%TYPE;
emp sal employees.salary%TYPE;

BEGIN
query emp (171, emp name, emp sal);
DBMS OUTPUT.PUT LINE('Name: ' || emp name);
DBMS OUTPUT.PUT LINE('Salary: ' || emp sal);
END;

* Use SQL*Plus host variables, execute QUERY EMP using

host variables, and print the host variables.
VARIABLE name VARCHAR2 (25)
VARIABLE sal NUMBER
EXECUTE query emp (171, :name, :sal)
PRINT name sal

ORACLE
1-11 Copyright © 2009, Oracle. All rights reserved.

Using IN OUT Parameters: Example

Calling environment

phone no (before the call) phone no (after the call)

'‘8006330575° '(800)633-0575'

CREATEvOR REPLACE PROCEDURE format phone
(phone no IN OUT VARCHAR2) IS
BEGIN
phone no := '(' || SUBSTR(phone no,1,3) ||
')' || SUBSTR(phone no,4,3) ||
'-' || SUBSTR(phone no,7);

END format phone;
/

ORACLE

1-12 Copyright © 2009, Oracle. All rights reserved.

Syntax for Passing Parameters

 Positional:

— Lists the actual parameters in the same order as the formal
parameters

e Named:

— Lists the actual parameters in arbitrary order and uses the
association operator (=>) to associate a named formal
parameter with its actual parameter

e Combination:

— Lists some of the actual parameters as positional and some
as named

ORACLE

1-13 Copyright © 2009, Oracle. All rights reserved.

Parameter Passing: Examples

CREATE OR REPLACE PROCEDURE add dept (
name IN departments.department name%TYPE,
loc IN departments.location id%TYPE) IS
BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (departments seq.NEXTVAL, name, loc);
END add dept;

/

« Passing by positional notation:
EXECUTE add dept ('TRAINING', 2500)

e Passing by nhamed notation:
EXECUTE add dept (loc=>2400, name=>'EDUCATION')

ORACLE

1-14 Copyright © 2009, Oracle. All rights reserved.

Using the DEFAULT Option for Parameters

« Defines default values for parameters:

CREATE OR REPLACE PROCEDURE add dept (
name departments.department_name%TYPEh='ﬁnknown',
loc departments.location id%TYPE|DEFAULT 1700)
IS
BEGIN
INSERT INTO departments (...)
VALUES (departments seq.NEXTVAL, name, loc);
END add dept;

* Provides flexibility by combining the positional and named
parameter-passing syntax:
EXECUTE add dept

EXECUTE add dept ('ADVERTISING', loc => 1200)
EXECUTE add dept (loc => 1200)

ORACLE

1-15 Copyright © 2009, Oracle. All rights reserved.

Summary of Parameter Modes

IN OUT IN OUT

Default mode Must be specified Must be specified

Value is passed into Returned to calling Passed into
subprogram environment subprogram; returned to

calling environment

Formal parameter acts Uninitialized variable |Initialized variable
as a constant

Actual parameter can be | Must be a variable Must be a variable
a literal, expression,
constant, or initialized

variable
Can be assigned a Cannot be assigned Cannot be assigned
default value a default value a default value

ORACLE

1-17 Copyright © 2009, Oracle. All rights reserved.

Invoking Procedures

You can invoke procedures by using:
 Anonymous blocks
« Another procedure, as in the following example:

CREATE OR REPLACE PROCEDURE process employees
IS
CURSOR emp cursor IS
SELECT employee id
FROM employees;

BEGIN
FOR emp rec IN emp cursor
LOOP
raise salary(emp rec.employee id, 10);
END LOOP;
COMMIT;
END process employees;
/

ORACLE

1-18 Copyright © 2009, Oracle. All rights reserved.

Handled Exceptions

Calling procedure Called procedure

Exception raised

Exception handled

Control returns
to calling procedure

ORACLE

1-19 Copyright © 2009, Oracle. All rights reserved.

Handled Exceptions: Example

CREATE PROCEDURE add department (
name VARCHAR2, mgr NUMBER, loc NUMBER) IS
BEGIN
INSERT INTO DEPARTMENTS (department id,
department name, manager id, location id)
VALUES (DEPARTMENTS SEQ.NEXTVAL, name, mgr, loc);

DBMS OUTPUT.PUT LINE ('Added Dept: '||name);
EXCEPTION
WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE('Err: adding dept: '| |name);
END;

CREATE PROCEDURE create departments IS

BEGIN

add department ('Media', 100, 1800); ;
add department ('Editing', 99, 1800);)‘
>add_department('Advertising', 101, 1800);
END;

ORACLE

1-20 Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled

Calling procedure Called procedure

Exception raised

Exception not
handled

Control returned
to exception section
of calling procedure

ORACLE

1-21 Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled: Example

SET SERVEROUTPUT ON
CREATE PROCEDURE add department noex(
name VARCHAR2, mgr NUMBER, loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department id,

department name, manager id, location id)
VALUES (DEPARTMENTS SEQ.NEXTVAL, name, mgr, loc);
DBMS OUTPUT.PUT LINE ('Added Dept: '| |name) ;
END ;

CREATE PROCEDURE create departments noex IS
BEGIN
add department noex('Media', 100, 1800);)(
add department noex('Editing', 99, 1800);)(
add department noex('Advertising', 101, 1800); %
ND ;

ORACLE

1-22 Copyright © 2009, Oracle. All rights reserved.

Removing Procedures

You can remove a procedure that is stored in the database.
e Syntax:

DROP PROCEDURE procedure name

« Example:

DROP PROCEDURE raise salary;

ORACLE

1-23 Copyright © 2009, Oracle. All rights reserved.

Viewing Procedures in the Data Dictionary

Information for PL/SQL procedures is saved in the following
data dictionary views:

* View source code in the USER SOURCE table to view the
subprograms that you own, or the ALL SOURCE table for

procedures that are owned by others who have granted
you the EXECUTE privilege.

SELECT text
FROM user source
WHERE name='ADD DEPARTMENT' and type='PROCEDURE'

ORDER BY line;

* View the names of procedures in USER OBJECTS.

SELECT object name
FROM user objects
WHERE object type = 'PROCEDURE';

ORACLE

1-24 Copyright © 2009, Oracle. All rights reserved.

Benefits of Subprograms

 Easy maintenance

 Improved data security and integrity
 Improved performance
 Improved code clarity

ORACLE

1-25 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Write a procedure to perform a task or an action

 Create, compile, and save procedures in the database by
using the CREATE PROCEDURE SQL command

« Use parameters to pass data from the calling environment

to the procedure by using three different parameter modes:
IN (the default), OUT, and IN OUT

e Recognize the effect of handling and not handling
exceptions on transactions and calling procedures

ORACLE

1-26 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Remove procedures from the database by using the DROP
PROCEDURE SQL command

 Modularize your application code by using procedures as
building blocks

ORACLE

1-27 Copyright © 2009, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:

 Creating stored procedures to:

— Insert new rows into a table using the supplied parameter
values

— Update data in a table for rows that match the supplied
parameter values

— Delete rows from a table that match the supplied parameter
values

— Query a table and retrieve data based on supplied parameter
values

 Handling exceptions in procedures
 Compiling and invoking procedures

ORACLE

1-28 Copyright © 2009, Oracle. All rights reserved.

