Understanding and Influencing
the PL/SQL Compiler

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Describe native and interpreted compilations

« List the features of native compilation

e Switch between native and interpreted compilations
e Set parameters that influence PL/SQL compilation

* Query data dictionary views on how PL/SQL code is
compiled

e Use the compiler warning mechanism and the
DBMS WARNING package to implement compiler warnings

ORACLE

12 -2 Copyright © 2009, Oracle. All rights reserved.

Native and Interpreted Compilation

Interpreted code : Natively compiled code

« Compiled to m-code : Translated C and compiled
« Stored in the database 1« Copied to a code library
|
|
|
|

............ ; Translated

PL/SQL source o
to C code C compiler

m-code

Native code library in OS directory

ORACLE

12 -3 Copyright © 2009, Oracle. All rights reserved.

Features and Benefits
of Native Compilation

Native compilation:
e Uses a generic makefile that uses the following
operating system software:
— C compiler
— Linker
— Make utility

« (Generates shared libraries that are copied to the file
system and loaded at run time

 Provides better performance (up to 30% faster than
Interpreted code) for computation-intensive procedural
operations

ORACLE

12 -4 Copyright © 2009, Oracle. All rights reserved.

Considerations When Using
Native Compilation

Consider the following:

 Debugging tools for PL/SQL cannot debug natively
compiled code.

« Natively compiled code is slower to compile than
Interpreted code.

« Large amounts of natively compiled subprograms can
affect performance due to operating system—-imposed
limitations when handling shared libraries. OS directory
limitations can be managed by setting database
Initialization parameters:

— PLSQL NATIVE LIBRARY SUBDIR COUNT and

— PLSQL NATIVE LIBRARY DIR

ORACLE

12 -5 Copyright © 2009, Oracle. All rights reserved.

Parameters Influencing Compilation

e System parameters are set inthe initSID.ora file or by
using the SPFILE:

PLSQL NATIVE LIBRARY DIR = full-directory-path-name
PLSQL NATIVE LIBRARY SUBDIR COUNT = count

« System or session parameters:

PLSQL COMPILER FLAGS = 'NATIVE' or 'INTERPRETED'

ORACLE

12-6 Copyright © 2009, Oracle. All rights reserved.

Switching Between Native
and Interpreted Compilation

e Setting native compilation:
— For the system:
ALTER SYSTEM SET plsql compiler flags='NATIVE';

— For the session:
ALTER SESSION SET plsql compiler flags='NATIVE';

« Setting interpreted compilation:

— For the system level:

ALTER SYSTEM
SET plsqgl compiler flags='INTERPRETED';

— For the session:

ALTER SESSION
SET plsql compiler flags='INTERPRETED';

ORACLE

12 -7 Copyright © 2009, Oracle. All rights reserved.

Viewing Compilation Information
In the Data Dictionary

Query information in the following views:
e TUSER STORED SETTINGS

e USER PLSQL OBJECTS
Example:

SELECT param value

FROM user stored settings

WHERE param name = 'plsql compiler flags'
AND object name = 'GET EMPLOYEES';

Note: The PARAM VALUE column has a value of NATIVE for

procedures that are compiled for native execution; otherwise, it
has a value of INTERPRETED.

ORACLE

12-8 Copyright © 2009, Oracle. All rights reserved.

Using Native Compilation

To enable native compilation, perform the following steps:
1. Edit the supplied makefile and enter appropriate paths
and other values for your system.

2. Setthe PLSQL COMPILER FLAGS parameter (at system
or session level) to the value NATIVE. The default is
INTERPRETED.

3. Compile the procedures, functions, and packages.

4. Query the data dictionary to see that a procedure is
compiled for native execution.

ORACLE

12-9 Copyright © 2009, Oracle. All rights reserved.

Compiler Warning Infrastructure

The PL/SQL compiler in Oracle Database 10g has been
enhanced to produce warnings for subprograms. Warning
levels:

 Can be set:

— Declaratively with the PLSQL WARNINGS Iinitialization
parameter

— Programmatically using the DBMS WARNINGS package

 Are arranged in three categories: severe, performance,
and informational

« Can be enabled and disabled by category or a specific
message

Examples of warning messages:

SP2-0804: Procedure created with compilation warnings

PLW-07203: The 'IO0 TBL' parameter may benefit from use
of the NOCOPY compiler hint.

ORACLE

12 -10 Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels

Set the PLSQL WARNINGS Initialization parameter to enable the
database to issue warning messages.

ALTER SESSION SET PLSQL WARNINGS = 'ENABLE:SEVERE',
'DISABLE: INFORMATIONAL' ;

 The PLSQL WARNINGS combine a qualifier value
(ENABLE, DISABLE, or ERROR) with a comma-separated

list of message numbers, or with one of the following
modifier values:

— ALL, SEVERE, INFORMATIONAL, or PERFORMANCE

 Warning messages use a PLW prefix.

PLW-07203: The 'IO TBL' parameter may benefit from
use of the NOCOPY compiler hint.

ORACLE

12-11 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Using PLSQL WARNINGS

The PLSQL WARNINGS setting:
e« Can be set to DEFERRED at the system level

* Is stored with each compiled subprogram

 That is current for the session is used by default when
recompiling with:
— A CREATE OR REPLACE statement
— AN ALTER. . .COMPILE statement

 That is stored with the compiled subprogram is used when
REUSE SETTINGS is specified when recompiling with an

ALTER...COMPILE statement

ORACLE

12 -12 Copyright © 2009, Oracle. All rights reserved.

DBMS WARNING Package

The DBMS WARNING package provides a way to

programmatically manipulate the behavior of the current system
or session PL/SQL warning settings. Using DBMS WARNING

subprograms, you can:
* Query existing settings

* Modify the settings for specific requirements or restore
original settings

« Delete the settings
Example: Saving and restoring warning settings for a
development environment that calls your code that compiles

PL/SQL subprograms and suppresses warnings due to
business requirements

ORACLE

12 - 13 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING Procedures

Package procedures change PL/SQL warnings:

ADD WARNING SETTING CAT (w category,w value, scope)
ADD WARNING SETTING NUM(w number,w value, scope)
SET WARNING SETTING STRING(w value, scope)

« All parameters are IN parameters and have the VARCHAR?2
data type. However, the w number parameter is a
NUMBER data type.

« Parameter string values are not case-sensitive.

« The w wvalue parameters values are ENABLE, DISABLE,
and ERROR.

e The w_category values are ALL, INFORMATIONAL,
SEVERE, and PERFORMANCE.

e The scope value is either SESSION or SYSTEM. Using
SYSTEM requires the ALTER SYSTEM privilege.

ORACLE

12 - 14 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING Functions

Package functions read PL/SQL warnings:

GET CATEGORY (w number) RETURN VARCHAR2

GET WARNING SETTING CAT (w category) RETURN VARCHAR2
GET WARNING SETTING NUM(w number) RETURN VARCHAR2
GET WARNING SETTING STRING RETURN VARCHAR2

e GET CATEGORY returns a value of ALL, INFORMATIONAL,
SEVERE, or PERFORMANCE for a given message number.

* GET WARNING SETTING CAT returns ENABLE, DISABLE,
or ERROR as the current warning value for a category
name, and GET WARNING SETTING NUM returns the

value for a specific message number.
e GET WARNING SETTING STRING returns the entire
warning string for the current session.

ORACLE

12 - 15 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING: Example

Consider the following scenario:

Save current warning settings, disable warnings for the
PERFORMANCE category, compile a PL/SQL package, and

restore the original warning setting.

CREATE PROCEDURE compile(pkg name VARCHAR2) IS
warn value VARCHAR2 (200) ;
compile stmt VARCHAR2 (200) :=
'ALTER PACKAGE '|| pkg name ||' COMPILE';
BEGIN
warn value := -- Save current settings
DBMS WARNING.GET WARNING SETTING STRING;
DBMS WARNING.ADD WARNING SETTING CAT(-- change
'PERFORMANCE', 'DISABLE', 'SESSION');
EXECUTE IMMEDIATE compile stmt;
DBMS WARNING.SET WARNING SETTING STRING(--restore
warn value, 'SESSION');

END ;

ORACLE

12 - 16 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING: Example

To test the compile procedure, you can use the following
script sequence:

DECLARE
PROCEDURE print (s VARCHAR2) IS
BEGIN
DBMS OUTPUT.PUT LINE(s);
END ;
BEGIN
print ('Warning settings before: '] |
DBMS WARNING.GET WARNING SETTING STRING) ;
compile ('my package');
print ('Warning settings after: '||
DBMS WARNING.GET WARNING SETTING STRING) ;
END;
/
SHOW ERRORS PACKAGE MY PACKAGE

ORACLE

12 - 17 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
e Switch between native and interpreted compilations

e Set parameters that influence native compilation of
PL/SQL programs

 Query data dictionary views that provide information about
PL/SQL compilation settings

 Use the PL/SQL compiler warning mechanism:
— Declaratively by setting the PLSQL. WARNINGS parameter
— Programmatically using the DBMS WARNING package

ORACLE

12 - 18 Copyright © 2009, Oracle. All rights reserved.

Practice 12: Overview

This practice covers the following topics:

« Enabling native compilation for your session and compiling
a procedure

 Creating a subprogram to compile a PL/SQL procedure,
function, or a package; suppressing warnings for the
PERFORMANCE compiler warning category; and restoring

the original session warning settings

 Executing the procedure to compile a PL/SQL package
containing a procedure that uses a PL/SQL table as an IN

OUT parameter without specifying the NOCOPY hint

ORACLE

12 - 19 Copyright © 2009, Oracle. All rights reserved.

