
Copyright © 2009, Oracle. All rights reserved.

Writing Executable Statements

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify lexical units in a PL/SQL block
• Use built-in SQL functions in PL/SQL
• Describe when implicit conversions take place and when

explicit conversions have to be dealt with
• Write nested blocks and qualify variables with labels
• Write readable code with appropriate indentations

Copyright © 2009, Oracle. All rights reserved.3 - 3

Lexical Units in a PL/SQL Block

Lexical units:
• Are building blocks of any PL/SQL block
• Are sequences of characters including letters, numerals,

tabs, spaces, returns, and symbols
• Can be classified as:

– Identifiers
– Delimiters
– Literals
– Comments

Copyright © 2009, Oracle. All rights reserved.3 - 5

PL/SQL Block Syntax and Guidelines

• Literals:
– Character and date literals must be enclosed in single

quotation marks.

– Numbers can be simple values or scientific notation.
• Statements can continue over several lines.

name := 'Henderson';

Copyright © 2009, Oracle. All rights reserved.3 - 6

Commenting Code

• Prefix single-line comments with two hyphens (--).
• Place multiple-line comments between the

symbols /* and */.
Example

DECLARE
...
annual_sal NUMBER (9,2);
BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */

annual_sal := monthly_sal * 12;
END; -- This is the end of the block
/

Copyright © 2009, Oracle. All rights reserved.3 - 7

SQL Functions in PL/SQL

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST
– Miscellaneous functions

• Not available in procedural statements:
– DECODE

– Group functions

Copyright © 2009, Oracle. All rights reserved.3 - 8

SQL Functions in PL/SQL: Examples

• Get the length of a string:

• Convert the employee name to lowercase:

desc_size INTEGER(5);
prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
desc_size:= LENGTH(prod_description);

emp_name:= LOWER(emp_name);

Copyright © 2009, Oracle. All rights reserved.3 - 9

Data Type Conversions

• Convert data to comparable data types
• Are of two types:

– Implicit conversions
– Explicit conversions

• Some conversion functions:
– TO_CHAR

– TO_DATE

– TO_NUMBER

– TO_TIMESTAMP

Copyright © 2009, Oracle. All rights reserved.3 - 11

Data Type Conversion

date_of_joining DATE:= '02-Feb-2000';

date_of_joining DATE:= 'February 02,2000';

date_of_joining DATE:= TO_DATE('February
02,2000','Month DD, YYYY');

1

2

3

Copyright © 2009, Oracle. All rights reserved.3 - 12

Nested Blocks

PL/SQL blocks can be nested.
• An executable section (BEGIN

… END) can contain nested
blocks.

• An exception section can
contain nested blocks.

Copyright © 2009, Oracle. All rights reserved.3 - 13

Nested Blocks

Example:

DECLARE
outer_variable VARCHAR2(20):='GLOBAL VARIABLE';
BEGIN
DECLARE
inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN
DBMS_OUTPUT.PUT_LINE(inner_variable);
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
/

Copyright © 2009, Oracle. All rights reserved.3 - 14

Variable Scope and Visibility

DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);

END;
/

1

2

Copyright © 2009, Oracle. All rights reserved.3 - 16

Qualify an Identifier

BEGIN <<outer>>
DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '

||outer.date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);
END;

DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);
END;
END outer;

Copyright © 2009, Oracle. All rights reserved.3 - 17

Determining Variable Scope

BEGIN <<outer>>
DECLARE

sal NUMBER(7,2) := 60000;
comm NUMBER(7,2) := sal * 0.20;
message VARCHAR2(255) := ' eligible for commission';

BEGIN
DECLARE

sal NUMBER(7,2) := 50000;
comm NUMBER(7,2) := 0;
total_comp NUMBER(7,2) := sal + comm;

BEGIN
message := 'CLERK not'||message;
outer.comm := sal * 0.30;

END;
message := 'SALESMAN'||message;

END;
END outer;
/

1

2

Copyright © 2009, Oracle. All rights reserved.3 - 18

Operators in PL/SQL

• Logical
• Arithmetic
• Concatenation
• Parentheses to control order

of operations

• Exponential operator (**)

Same as in SQL

Copyright © 2009, Oracle. All rights reserved.3 - 19

Operators in PL/SQL

Examples:
• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

loop_count := loop_count + 1;

good_sal := sal BETWEEN 50000 AND 150000;

valid := (empno IS NOT NULL);

Copyright © 2009, Oracle. All rights reserved.3 - 20

Programming Guidelines

Make code maintenance easier by:
• Documenting code with comments
• Developing a case convention for the code
• Developing naming conventions for identifiers and other

objects
• Enhancing readability by indenting

Copyright © 2009, Oracle. All rights reserved.3 - 21

Indenting Code

For clarity, indent each level of code.
Example:

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;
/

DECLARE
deptno NUMBER(4);
location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO deptno,

location_id
FROM departments
WHERE department_name

= 'Sales';
...
END;
/

Copyright © 2009, Oracle. All rights reserved.3 - 22

Summary

In this lesson, you should have learned how to:
• Use built-in SQL functions in PL/SQL
• Write nested blocks to break logically related functionalities
• Decide when to perform explicit conversions
• Qualify variables in nested blocks

Copyright © 2009, Oracle. All rights reserved.3 - 23

Practice 3: Overview

This practice covers the following topics:
• Reviewing scoping and nesting rules
• Writing and testing PL/SQL blocks

