Oracle Database 10g: PL/SQL
Fundamentals

Electronic Presentation

D17112GC30
Edition 3.0
April 2009

ORACLE

Authors
Salome Clement
Sunitha Patel
Tulika Srivastava

Technical Contributors

and Reviewers
Brian Boxx
Christoph Burandt
Zarko Cedjas
Dairy Chan
Isabelle Cornu
Kathryn Cunningham
Laszlo Czinkoczki
Burt Demchick
Laura Garza

Joel Goodman
Nancy Greenberg
Joe Greenwald
Jonathan Grove
Punita Handa
Jessie Ho

Craig Hollister
Alison Holloway
Chaitanya K oratamaddi
Bryn Llewellyn
Malika Marghadi
Hildegard Mayr
Miyuki Osato
Nagavalli Pataballa
Srinivas Putrevu
Bryan Roberts

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual
property laws. You may copy and print this document solely for your own use in an Oracle training
course. The document may not be modified or altered in any way. Except where your use constitutes
"fair use" under copyright law, you may not use, share, download, upload, copy, print, display,
perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part
without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any
problems in the document, please report them in writing to: Oracle University, 500 Oracle Parkway,
Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the
documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government'’s rights to use, modify, reproduce, release, perform, display, or disclose these
training materials are restricted by the terms of the applicable Oracle license agreement and/or the
applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Technical Contributors Editors
and Reviewers Richard Wallis
Helen Robertson Avijit Ghosh
Grant Spencer
Michael Versaci Graphic Designers
LeX Van Der Wefff Steve Elwood
Priya Saxena
Publishers
Sujatha Nagendra

Michael Sebastian
Nita Brozowski
Srividya Rameshkumar

Introduction

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe the objectives of the course
 Describe the course agenda
« ldentify the database tables used in the course

* |dentify the Oracle products that help you design a
complete business solution

ORACLE

-2 Copyright © 2009, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do the

following:
 Describe how PL/SQL provides programming extensions
to SQL

 Write PL/SQL code to interface with the database
« Design PL/SQL program units that execute efficiently

 Use PL/SQL programming constructs and conditional
control statements

 Handle run-time errors
 Describe stored procedures and functions

ORACLE

-3 Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Lessons for the first day:

Introduction

Introduction to PL/SQL

Declaring PL/SQL Variables
Writing Executable Statements
Interacting with the Oracle Server
Writing Control Structures

A A

ORACLE

-4 Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Lessons for the second day:

6. Working with Composite Data Types

7. Using Explicit Cursors

8. Handling Exceptions

9. Creating Stored Procedures and Functions

ORACLE

-5 Copyright © 2009, Oracle. All rights reserved.

ORACLE

Copyright © 2009, Oracle. All rights reserved.

-6

Human Resources (hr) Data Set

LOCATIONS

LOCATION_ID
STREET_ADDRESS
POSTAL _CODE
CITY
STATE_PROVINCE
COUNTRY_ID

DEPARTMENTS

0.1

COUNTRIES

COUNTRY_ID
COUNTRY_HAME
REGIOH_ID

0.1

REGIONS

REGIOH_ID
REGIOH_HAME

a..

1

DEPARTMENT _ID
DEPARTMENT _HAME
MAHAGER_ID
LOCATION_ID

JOB_HISTORY

=

.4 "

EMPLOYEES

A

EMPLOYEE_ID
MAHAGER_ID
DEPARTMENT _ID
FIRST_HAME
LAST_HAME
EMAIL
PHONE_HUMBER
HIRE_DATE

JOB D

SALARY
COMMISSION_PCT

o

EMPLOYEE_ID
START _DATE
EHND_DATE
JOB_ID
DEPARTMEHT _ID

x x

.1

JOBS

x

JOB_ID
JOB_TITLE
MIH_SALARY
MAX_SALARY

OraclelOg Grid Infrastructure

ORACLE ORACLE

APPLICATION
SERVER

ENTERPRISE MANAGER 1 0

DATABASE

ORACLE

-8 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 10g

Object Relational Data

ORACLE

Multimedia
V/ T
@E

Messages

DATABASE

-
Pt
=

ORACLE

-9 Copyright © 2009, Oracle. All rights reserved.

Oracle Application Server 10g

Portals

ORACLE

Transactional applications

Business intelligence

W APPLICATION
| SERVER
Integration
1
.
0"
o
Application development Application
framework server

ORACLE

| -10 Copyright © 2009, Oracle. All rights reserved.

Oracle Enterprise Manager 10g
Grid Control

e Software provisioning
* Application service-level monitoring

ENTERPRISE MANAGER 10

ORACLE

[-11 Copyright © 2009, Oracle. All rights reserved.

-12

Oracle Internet Platform

Copyright © 2009, Oracle. All rights reserved.

Clients 2
D) e
!ﬂ & NN
Any Any Any
browser mail client FTP client

| 1] ya
+— . . 0y}
= Internet applications o S
5 r r = |
0 | | . =3
=t Business logic Presentation and o SQL
- - : = 58"
< andldata busmeis logic s | P
= o | |
= - F>J I PL/SQL
i Databases \Appllcatlon o |)
% servers a T
>
2) Java

i |
Network services ! _____
ORACLE

Summary

In this lesson, you should have learned how to:

 Describe the course objectives and course agenda
« ldentify tables and their relationships in the hr schema
« ldentify the various products in the Oracle 10g grid

Infrastructure that enable you to develop a complete
business solution

ORACLE

l-13 Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Explain the need for PL/SQL
« Explain the benefits of PL/SQL
« |dentify the different types of PL/SQL blocks

 Use Oracle SQL Developer as a development environment
for PL/SQL

e Output messages from PL/SQL

ORACLE

1-2 Copyright © 2009, Oracle. All rights reserved.

What Is PL/SQL?

PL/SQL:
« Stands for Procedural Language extension to SQL

« Is Oracle Corporation’s standard data access language for
relational databases

 Seamlessly integrates procedural constructs with SQL

ORACLE

1-3 Copyright © 2009, Oracle. All rights reserved.

About PL/SQL

PL/SQL:

e Provides a block structure for executable units of code.

Maintenance of code is made easier with such a well-
defined structure.

 Provides procedural constructs such as:
— Variables, constants, and types
— Control structures such as conditional statements and loops

— Reusable program units that are written once and executed
many times

ORACLE
1-4 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Environment

4 _)
PL/SQL engine
procedural .| Procedural
| (;1, »|PL/SQL Statement
p|J5,.=. Block Executor
Ty SQL
\ J
4 v)
SQL Statement
Executor
Oracle Database Server
& J

ORACLE

1-5 Copyright © 2009, Oracle. All rights reserved.

Benefits of PL/SQL

* Integration of procedural constructs with SQL
 Improved performance

SQL
IF...THEN
SQL
ELSE
SQL “
END IF; B
SQL

ORACLE

1-6 Copyright © 2009, Oracle. All rights reserved.

Benefits of PL/SQL

 Modularized program development
e Integration with Oracle tools

« Portability

e Exception handling

ORACLE

1-7 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Block Structure

e DECLARE (optional)
— Variables, cursors, user-defined exceptions
e BEGIN (mandatory)

— SQL statements
— PL/SQL statements

e EXCEPTION (optional) A
— Actions to perform .FEF
when errors occur .Bﬁ?l" g
e END; (mandatory) . Eﬂ.;al’“a

ORACLE

1-9 Copyright © 2009, Oracle. All rights reserved.

Block Types

Anonymous Procedure Function
[DECLARE] PROCEDURE name FUNCTION name
IS RETURN datatype
IS
BEGIN BEGIN BEGIN
--statements --statements --statements
RETURN value;
[EXCEPTION] [EXCEPTION] [EXCEPTION]
END ; END ; END ;

ORACLE

1-11 Copyright © 2009, Oracle. All rights reserved.

ORACLE

1-

Program Constructs

Tools Constructs

Anonymous blocks

Application procedures
or functions

Application packages

Application triggers

Object types

13

Database Server
Constructs

Anonymous blocks

Stored procedures or
functions

Stored packages

Database triggers

Object types

Copyright © 2009, Oracle. All rights reserved.

PL/SQL Programming Environments

Oracle JDeveloper
&8 OraclejDeveloper [E=BJ
Ei

le Edit Miew Search Mavigate FBun Debug Refactor ‘ersioning Tools Window Help

Feo@a -0 96 EBEHE A4 hdJda- - S-DESEEN

Applicatiu:-ns]Qﬂ] E] I:?)Star't Page] E|
X @Y SEROONR

il Connections =
#-7) Application Server : . . .

-l Databse rors Developing J2EE Applications

{21 UDDI Registry

F-07) web DAY Server T el E' Get started on your %I Let cue cards hel
JDeveloper own o
Create wour pagd:s
& What's new % Check for product :
updates and new L Erea:e & sl ale ﬁ';‘
: # Use the tutorials features M n;fnzstiifal?ae "
.= Structure I—E] _ # Create a new application
& Work with samples Create wour data m
@ View online W Operj an_ existing _ 3 Create____an EJB Sessi
A application and project Bean &)
% Create an EJB Entit
« Read the # Import an existing J2EE <7 Clizeiie & vigglis
N application from the file mapping @&
System

Fresent data in wour

% Check out existing s Bind wour page to g |

sources from source managed bean @™

4 bk
Help Content | 4 | L]
| Editing

ORACLE

1-15 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Programming Environments

Oracle SQL Developer
4 OracleSOLDeveloper [B=

File Edit Miew Navigate Run Source Versioning Migration Tools Help

ZoEg 90 XEROQ O S- =

Bl @ |3 =] ¥

B@T 7

------ E] Connections %
[

ORACLE

1-16 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

a(:unnectiuns |

H@T 0
—[&h Connections B New / Select Database Connection X

E newConnection :
- - Connectio... Connecti.. | Connection Mame |u:ura41 |
Import Connections
Username ||:|ra41 |
Password |*"“'*"“'r |

Sawe Password

Oracle

Role [] &% Authentication
> Connection Type [] Proxy Connection

Hosthame |I-:u:a|h|:|st |
Port 1521 |
(@) 51D ||:|r|:I |

|

() Service name |

Status Success

[Help l I Save | [Clear I I Test] l Connect *J | Cancel l

ORACLE

1-17 Copyright © 2009, Oracle. All rights reserved.

Creating an Anonymous Block

Enter the anonymous block in the SQL Developer workspace:

[orad1 (=]
>ERR0 88 ¢ orait ~
Enter 5L Statement:
DECLARE
w_Thame VARCHARZ (207,
BEGIN

SELECT first_name

INTOD w_fthame

FROM emplowvees

WHERE emplowee_id=100;
END;

ORACLE

1-18 Copyright © 2009, Oracle. All rights reserved.

Executing an Anonymous Block

Click the Run Script button to execute the anonymous block:

[orad1 (=]
>PERR® W8 ¢ 314017214 seconds loradl v

E”_!te' RuR Script (F5)]
DE

v_Thame VARCHARZ (200 ;
BEGIN

SELECT first_name

INTO w_fhame

FROM emplovees
WHERE employee_id=100;
END;

= Results EESn:ript Cutput T Explain |%ﬂﬂutmrace |'LE.DEMS Gut... | G
¢8aa& |

anarymous hlock completed

ORACLE

1-19 Copyright © 2009, Oracle. All rights reserved.

Testing the Output of a PL/SQL Block

 Enable output in SQL Developer by clicking the Enable
DBMS Output button on the DBMS Output tab:

= Results |j Script Qutput |'E_-ﬂE:-:pIain |E’}Autntrace @DEMS Dutput ,,:‘l OA Cratput
=) @Size: 20000 ' “\ bl
S—— \
et Serveroutput on Enable DBMS DBMS Output
‘ Output Tab

 Use a predefined Oracle package and its procedure:
— DBMS OUTPUT.PUT LINE

ORACLE

1-20 Copyright © 2009, Oracle. All rights reserved.

Testing the Output of a PL/SQL Block

> orad1 | =
FPERRASG BB ¢ 057456905 seconds
Enter 5L Statement:
DECLARE
w_Thame VARCHARZ (207 ;
BEGIMN

SELECT Tirst_name

INTO w_tThame

FROM emplovees

WHERE employee_id=100;

DEM5_O0UTPUT.PUT_LINE('The First MWame of the Emplowvee is: '||wv_fThame);
END;

= Results |:_£| Script Cutput |:EE]Eprain |Eﬁutntrace @DEMS Cutput 4 Ot Cutput
=) | @ H & | sutfer sizej 20000 " pail

SET SErWERrauTput an
The First MWame of the Emplovee is: STewen

ORACLE

1-21 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

* Integrate SQL statements with PL/SQL program constructs
* |dentify the benefits of PL/SQL

« Differentiate different PL/SQL block types

 Use Oracle SQL Developer as the programming
environment for PL/SQL

e Output messages in PL/SQL

ORACLE

1-22 Copyright © 2009, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
* |dentifying which PL/SQL blocks execute successfully
 Creating and executing a simple PL/SQL block

ORACLE

1-23 Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« ldentify valid and invalid identifiers

e List the uses of variables

 Declare and initialize variables

e List and describe various data types

« ldentify the benefits of using the $TYPE attribute

 Declare, use, and print bind variables

ORACLE

2-2 Copyright © 2009, Oracle. All rights reserved.

Use of Variables

Variables can be used for:
« Temporary storage of data
« Manipulation of stored values

* Reusability
SELECT
»first name,
»department id . £

l ‘ﬂ INTO Jennifer |emp fname

If” emp fname, t

emp deptno 1
FROM .. 10 |emp deptno

ORACLE

2-3 Copyright © 2009, Oracle. All rights reserved.

ldentifiers

|dentifiers are used for:

 Naming a variable

* Providing conventions for variable names
— Must start with a letter

— Can include letters or numbers

— Can include special characters (such as dollar sign,
underscore, and pound sign)

— Must limit the length to 30 characters
— Must not be reserved words

& 2% o F

ORACLE

2-4 Copyright © 2009, Oracle. All rights reserved.

Handling Variables in PL/SQL

Variables are:
« Declared and initialized in the declarative section
 Used and assigned new values in the executable section
« Passed as parameters to PL/SQL subprograms
e Used to hold the output of a PL/SQL subprogram

ORACLE

2-5 Copyright © 2009, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables

Syntax
identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Examples

DECLARE
emp hiredate DATE;
emp deptno NUMBER (2) NOT NULL := 10;
location VARCHAR2 (13) := 'Atlanta’;
C_comm CONSTANT NUMBER := 1400;

ORACLE

2-6 Copyright © 2009, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables

SET SERVEROUTPUT ON
DECLARE

(::) Myname VARCHAR2 (20) ;
BEGIN

DBMS OUTPUT.PUT LINE('My name is: '| |Myname) ;

Myname := 'John';

DBMS OUTPUT.PUT LINE('My name is: '| |Myname) ;
END;

/

SET SERVEROUTPUT ON
DECLARE
Myname VARCHAR2 (20):= 'John';
(::) BEGIN
Myname := 'Steven';
DBMS OUTPUT.PUT LINE('My name is: '||Myname);
END ;

/

ORACLE

2-7 Copyright © 2009, Oracle. All rights reserved.

Delimiters in String Literals

SET SERVEROUTPUT ON

DECLARE
event VARCHAR2 (15) ;
BEGIN
event := q'!Father's day!';
DBMS OUTPUT.PUT LINE('3rd Sunday in June is :
'| |event) ;

event := q'[Mother's dayl]';
DBMS OUTPUT.PUT LINE('2nd Sunday in May is :
'| |event) ;
END;

/

anarymous hlock completed
Ird sSunday in June is @ Father's dav
2nd sunday in May is @ Mother's day

ORACLE

2-8 Copyright © 2009, Oracle. All rights reserved.

Types of Variables

 PL/SQL variables:

— Scalar

— Composite

— Reference

— Large object (LOB)
 Non-PL/SQL variables: Bind variables

ORACLE

2-9 Copyright © 2009, Oracle. All rights reserved.

Types of Variables

TRUE 25-JAN-01

/The soul of the lazy man\

desires, and he has nothing;
but the soul of the diligent
shall be made rich.

ORACLE

2-10 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Declaring and Initializing PL/SQL
Variables

 Follow naming conventions.
* Use meaningful names for variables.

* Initialize variables designated as NOT NULL and
CONSTANT.

* Initialize variables with the assignment operator (: =) or the
DEFAULT keyword:

Myname VARCHAR2 (20) :='John';

Myname VARCHAR2 (20) DEFAULT 'John';

« Declare one identifier per line for better readability and
code maintenance.

ORACLE

2-11 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Declaring and Initializing PL/SQL

Variables
* Avoid using column names as identifiers.

DECLARE

employee id NUMBER(6) ;
BEGIN

SELECT employee id

INTO employee id

FROM employees

WHERE last name = 'Kochhar';
END ;
/

e Use the NOT NULL constraint when the variable must hold
a value.

ORACLE

2-12 Copyright © 2009, Oracle. All rights reserved.

Scalar Data Types

 Hold a single value
 Have no internal components

TRUE 25-JAN-01

/The soul of the lazy man\

desires, and he has nothing;
but the soul of the diligent
shall be maderich.

Atlanta

ORACLE

2-13 Copyright © 2009, Oracle. All rights reserved.

Base Scalar Data Types

* CHAR [(maximum length)]

* VARCHAR2 (maximum length)

* LONG

e LONG RAW

e NUMBER [(precision, scale)]
° BINARY INTEGER

* PLS INTEGER

e BOOLEAN

° BINARY FLOAT

° BINARY DOUBLE

ORACLE

2-14 Copyright © 2009, Oracle. All rights reserved.

Base Scalar Data Types

 DATE

e TIMESTAMP

e TIMESTAMP WITH TIME ZONE

e TIMESTAMP WITH LOCAL TIME ZONE
e INTERVAL YEAR TO MONTH

e INTERVAL DAY TO SECOND

ORACLE

2-16 Copyright © 2009, Oracle. All rights reserved.

BINARY FLOAT and BINARY DOUBLE

 Represent floating point numbers in IEEE 754 format

o Offer better interoperability and operational speed
e Store values beyond the values that the data type NUMBER
can store

* Provide the benefits of closed arithmetic operations and
transparent rounding

ORACLE

2-18 Copyright © 2009, Oracle. All rights reserved.

Declaring Scalar Variables

Examples
DECLARE
emp job VARCHAR2 (9) ;
count loop BINARY INTEGER := 0;
dept total sal NUMBER(9,2) := 0;
orderdate DATE := SYSDATE + 7;
c_tax rate CONSTANT NUMBER(3,2) := 8.25;
valid BOOLEAN NOT NULL := TRUE;

ORACLE

2-20 Copyright © 2009, Oracle. All rights reserved.

%TYPE Attribute

The $TYPE attribute

* Is used to declare a variable according to:
— A database column definition
— Another declared variable
* |s prefixed with:
— The database table and column
— The name of the declared variable

ORACLE

2-21 Copyright © 2009, Oracle. All rights reserved.

Declaring Variables
with the $TYPE Attribute

Syntax
identifier table.column name%TYPE;
Examples
emp lname employees.last name%TYPE;
balance NUMBER (7, 2) ;
min balance balance%TYPE := 1000;

ORACLE

2-23 Copyright © 2009, Oracle. All rights reserved.

Declaring Boolean Variables

e Only the values TRUE, FALSE, and NULL can be assigned
to a Boolean variable.

« Conditional expressions use the logical operators AND and
OR and the unary operator NOT to check the variable

values.
e The variables always yield TRUE, FALSE, or NULL.

* Arithmetic, character, and date expressions can be used to
return a Boolean value.

ORACLE

2-24 Copyright © 2009, Oracle. All rights reserved.

Bind Variables

Bind variables are:

 Created In the environment

 Also called host variables

e Created with the VARIABLE keyword

 Used in SQL statements and PL/SQL blocks
 Accessed even after the PL/SQL block is executed
 Referenced with a preceding colon

ORACLE

2-25 Copyright © 2009, Oracle. All rights reserved.

Printing Bind Variables

Example

VARIABLE emp salary NUMBER
BEGIN

SELECT salary INTO :emp salary

FROM employees WHERE employee id = 178;
END;

/
PRINT emp salary

SELECT first name, last name FROM employees
WHERE salary=:emp salary;

ORACLE

2-27 Copyright © 2009, Oracle. All rights reserved.

Printing Bind Variables

Example

VARIABLE emp salary NUMBER
SET AUTOPRINT ON
BEGIN

SELECT salary INTO :emp salary

FROM employees WHERE employee id = 178;
END;

/

ananymous block completed
emp_salary

F000

ORACLE

2-28 Copyright © 2009, Oracle. All rights reserved.

Substitution Variables

 Are used to get user input at run time

* Are referenced within a PL/SQL block with a preceding
ampersand

 Are used to avoid hard-coding values that can be obtained
at run time

VARIABLE emp salary NUMBER
SET AUTOPRINT ON
DECLARE

empno NUMBER (6) : S&empno;
BEGIN

SELECT salary INTO :emp salary

FROM employees WHERE employee id = empno;
END ;

/

ORACLE

2-29 Copyright © 2009, Oracle. All rights reserved.

Substitution Variables

[Enter Substitution Variable X
EMPRC:

o] 4 Cancel
]

WOARTABLE emp_salary NUMBER
SET AUTOPRINT 0N

DECLARE

empno NUMBER(G) :=100;

BEGIN
SELECT salary INTO :emp_salary
FEOM emplovees WHEEE emplowvee_id = empno;

EWD;
anarymous hlock completed
emp_salary

ORACLE

2-30 Copyright © 2009, Oracle. All rights reserved.

Prompt for Substitution Variables

SET VERIFY OFF
VARIABLE emp salary NUMBER
ACCEPT empno PROMPT 'Please enter a valid employee
number: '
SET AUTOPRINT ON
DECLARE
empno NUMBER (6) := &empno;
BEGIN
SELECT salary INTO :emp salary FROM employees
WHERE employee id = empno;
END;
/

Bl Entervalue Bg

Fleaze enter avalid employee number:

100

Ok —ancel
h.

ORACLE

2-31 Copyright © 2009, Oracle. All rights reserved.

Using DEFINE for a User Variable

Example

SET VERIFY OFF
DEFINE lname= Urman
DECLARE

fname VARCHAR2 (25) ;

BEGIN
SELECT first name INTO fname FROM employees

WHERE last name='&lname';
END ;
/

ORACLE

2-32 Copyright © 2009, Oracle. All rights reserved.

- 33

Composite Data Types

TRUE

23-DEC-98

ATLANTA

|4

PL/SQL table structure

PL/SQL table structure

1 SMITH 1 5000

2 JONES 2 2345

3 NANCY 3 12

4 TIM 4 3456

L LVARCHARZ L L NUMBER

PLS INTEGER

PLS INTEGER

Copyright © 2009, Oracle. All rights reserved.

ORACLE

LOB Data Type Variables

ORACLE

2-34 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Recognize valid and invalid identifiers

 Declare variables in the declarative section of a PL/SQL
block

 Initialize variables and use them Iin the executable section

« Differentiate between scalar and composite data types
 Use the $TYPE attribute

e Use bind variables

ORACLE

2-35 Copyright © 2009, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
« Determining valid identifiers
« Determining valid variable declarations
e Declaring variables within an anonymous block
« Using the $TYPE attribute to declare variables
« Declaring and printing a bind variable
« Executing a PL/SQL block

ORACLE

2-36 Copyright © 2009, Oracle. All rights reserved.

Writing Executable Statements

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

e ldentify lexical units in a PL/SQL block
e Use built-in SQL functions in PL/SQL

« Describe when implicit conversions take place and when
explicit conversions have to be dealt with

 Write nested blocks and qualify variables with labels
 Write readable code with appropriate indentations

ORACLE

3-2 Copyright © 2009, Oracle. All rights reserved.

Lexical Units in a PL/SQL Block

Lexical units:
* Are building blocks of any PL/SQL block

 Are sequences of characters including letters, numerals,
tabs, spaces, returns, and symbols
e Can be classified as:
— ldentifiers
— Delimiters
— Literals
— Comments

ORACLE

3-3 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Block Syntax and Guidelines

e Literals:

— Character and date literals must be enclosed in single
guotation marks.

name := 'Henderson';

— Numbers can be simple values or scientific notation.
¢ Statements can continue over several lines.

ORACLE

3-5 Copyright © 2009, Oracle. All rights reserved.

Commenting Code

« Prefix single-line comments with two hyphens (--).

« Place multiple-line comments between the
symbols /* and */.

Example

DECLARE

annual sal NUMBER (9,2);
BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */

annual sal := monthly sal * 12;
END; -- This is the end of the block
/

ORACLE

3-6 Copyright © 2009, Oracle. All rights reserved.

SQL Functions in PL/SQL

« Avallable in procedural statements:
— Single-row number
— Single-row character
— Data type conversion
— Date
— Timestamp
— GREATEST and LEAST
— Miscellaneous functions

 Not available in procedural statements:
— DECODE

— Group functions

ORACLE

3-7 Copyright © 2009, Oracle. All rights reserved.

SQL Functions in PL/SQL: Examples

 (Get the length of a string:

desc size INTEGER(S) ;
prod description VARCHAR2 (70) :='You can use this

product with your radios for higher frequency';

-- get the length of the string in prod description
desc_size:= LENGTH(prod description)|;

 Convert the employee name to lowercase:

emp name:= LOWER (emp name) ;

ORACLE

3-8 Copyright © 2009, Oracle. All rights reserved.

Data Type Conversions

 Convert data to comparable data types

* Are of two types:
— Implicit conversions
— EXxplicit conversions
¢« Some conversion functions:
— TO CHAR
— TO DATE
— TO NUMBER
— TO TIMESTAMP

ORACLE

3-9 Copyright © 2009, Oracle. All rights reserved.

Data Type Conversion

date of joining DATE:= '02-Feb-2000"';

©

(::) date of joining DATE:= 'February 02,2000';

date of joining DATE:= TO DATE(('February
02,2000', "Month DD, YYYY');

ORACLE

3-11 Copyright © 2009, Oracle. All rights reserved.

Nested Blocks

PL/SQL blocks can be nested.
 An executable section (BEGIN

. RE
. END) can contain nested i
blocks. EE@N
« An exception section can AR
contain nested blocks. pEC
oD)
o
D’

ORACLE

3-12 Copyright © 2009, Oracle. All rights reserved.

Nested Blocks

Example:

DECLARE
outer variable VARCHAR2 (20) :='GLOBAL VARIABLE';
BEGIN
DECLARE
inner variable VARCHAR2 (20) :='LOCAL VARIABLE';
BEGIN
DBMS OUTPUT.PUT LINE (inner variable);
DBMS OUTPUT.PUT LINE (outer variable);
END ;
DBMS OUTPUT.PUT LINE (outer variable);
END;

/

ORACLE

3-13 Copyright © 2009, Oracle. All rights reserved.

Variable Scope and Visibility

DECLARE
father name VARCHAR2 (20) :='Patrick';
date of birth DATE:='20-Apr-1972';
BEGIN
DECLARE
child name VARCHAR2 (20) :='Mike';
date of birth DATE:='12-Dec-2002"';

BEGIN
DBMS OUTPUT.PUT LINE('Father''s Name: '||father name) ;
(::). DBMS OUTPUT.PUT LINE('Date of Birth: '||date of birth);
DBMS OUTPUT.PUT LINE('Child''s Name: '||child name) ;
END;
(::}u-DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date of birth);
END;

/

ORACLE

3-14 Copyright © 2009, Oracle. All rights reserved.

Qualify an Identifier

BEGIN <<outer>>
DECLARE
father name VARCHAR2 (20) :='Patrick’
date of birth DATE:='20-Apr-1972"';
BEGIN
DECLARE
child name VARCHAR2 (20) :='Mike';
date of birth DATE:='12-Dec-2002"
BEGIN
DBMS OUTPUT.PUT LINE ('Father''s Name: '||father name) ;
DBMS OUTPUT.PUT LINE('Date of Birth: '
| |outer.date of birth);

e

we

DBMS OUTPUT.PUT LINE('Child''s Name: '||child name) ;
END;
DBMS OUTPUT.PUT LINE('Date of Birth: '||date of birth);
END;

END outer;

ORACLE

3-16 Copyright © 2009, Oracle. All rights reserved.

Determining Variable Scope

BEGIN <<outer>>

DECLARE
sal NUMBER (7,2) := 60000;
comm NUMBER (7,2) := sal * 0.20;
message VARCHAR2 (255) := ' eligible for commission';
BEGIN
DECLARE
sal NUMBER (7,2) := 50000;
comm NUMBER (7,2) := 0;
total comp NUMBER(7,2) := sal + comm;
BEGIN
message := 'CLERK not' | |message;

message := 'SALESMAN' | |message;
"ENDT>
END outer;

/

(J_) » outer.comm := sal * 0.30;
END;

ORACLE

3-17 Copyright © 2009, Oracle. All rights reserved.

Operators in PL/SQL

 Logical
e Arithmetic |
- Concatenation Same as In SQL

e Parentheses to control order
of operations

- Exponential operator (**)

ORACLE

3-18 Copyright © 2009, Oracle. All rights reserved.

Operators in PL/SQL

Examples:
* Increment the counter for a loop.

loop count := loop count + 1;

« Set the value of a Boolean flag.

good sal := sal BETWEEN 50000 AND 150000;

« Validate whether an employee number contains a value.

valid := (empno IS NOT NULL) ;

ORACLE

3-19 Copyright © 2009, Oracle. All rights reserved.

Programming Guidelines

Make code maintenance easier by:
 Documenting code with comments
« Developing a case convention for the code

« Developing naming conventions for identifiers and other
objects

« Enhancing readabillity by indenting

ORACLE

3-20 Copyright © 2009, Oracle. All rights reserved.

Indenting Code

For clarity, indent each level of code.

Example: DECLARE
TeRgT ieptn? . NUMBER(:);
IF x=0 THEN ocation i NUMBER (4) ;
yi=1; BEGIN
END IF; SELECT iepar?men?ald,
END; ocation 1
INTO deptno,
/ . :
location id
FROM departments
WHERE department name
= 'Sales’';
END;

ORACLE

3-21 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

e Use built-in SQL functions in PL/SQL

* Write nested blocks to break logically related functionalities
« Decide when to perform explicit conversions

* Qualify variables in nested blocks

ORACLE

3-22 Copyright © 2009, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
 Reviewing scoping and nesting rules
« Writing and testing PL/SQL blocks

ORACLE

3-23 Copyright © 2009, Oracle. All rights reserved.

Interacting with the Oracle Server

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Determine which SQL statements can be directly included
In a PL/SQL executable block

 Manipulate data with DML statements in PL/SQL

« Use transaction control statements in PL/SQL

 Use the INTO clause to hold the values returned by a SQL
statement

« Differentiate between implicit cursors and explicit cursors
e Use SQL cursor attributes

ORACLE

4-2 Copyright © 2009, Oracle. All rights reserved.

SQL Statements in PL/SQL

 Retrieve a row from the database by using the SELECT
command.

« Make changes to rows in the database by using DML
commands.

e Control a transaction with the COMMIT, ROLLBACK, Or
SAVEPOINT command.

ORACLE

4-3 Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT statement.
Syntax:

SELECT select list

INTO {variable namel, variable name]...
| record name}

FROM table

[WHERE condition];

ORACLE

4-5 Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL

« The INTO clause is required.
* Queries must return only one row.

Example

SET SERVEROUTPUT ON
DECLARE

fname VARCHAR2 (25) ;
BEGIN

SELECT first name INTO fname

FROM employees WHERE employee id=200;

DBMS OUTPUT.PUT LINE(' First Name is : '||£fname);
END ;

/

ORACLE

4-7 Copyright © 2009, Oracle. All rights reserved.

Retrieving Data in PL/SQL

Retrieve hire date and salary for the specified employee.

Example:
DECLARE
emp hiredate employees.hire date%TYPE;
emp salary employees.salary%TYPE;
BEGIN
SELECT hire date, salary
INTO emp hiredate, emp salary
FROM employees
WHERE employee id = 100;
END ;
/

ORACLE

4-9 Copyright © 2009, Oracle. All rights reserved.

Retrieving Data in PL/SQL

Return the sum of the salaries for all the employees in the
specified department.

Example:

SET SERVEROUTPUT ON

DECLARE
sum sal NUMBER(10,2);
deptno NUMBER NOT NULL := 60;
BEGIN
SELECT SUM(salary) -- group function

INTO sum sal FROM employees
WHERE department id = deptno;
DBMS OUTPUT.PUT LINE ('The sum of salary is '
|| sum sal) ;
END ;

/

ORACLE

4-10 Copyright © 2009, Oracle. All rights reserved.

Naming Conventions

DECLARE
hire date employees.hire date%TYPE;
sysdate hire date%TYPE;
employee id employees.employee id%TYPE := 176;
BEGIN
SELECT hire date, sysdate
INTO hire date, sysdate
FROM employees
WHERE employee id = employee id;
END;
Error report:
ORA-01422: exact fetch returns maore Than reguested number ot rows
OEA-06512: at line &
o142, 00000 - "exact fetch returns more than requested number of rows"
YLause: The number specified in exact fetch is less Than Tthe rows returned.
wACTion: Eewrite the query or change number of rows reguested

ORACLE

4-11 Copyright © 2009, Oracle. All rights reserved.

Naming Conventions

« Use a naming convention to avoid ambiguity in the WHERE
clause.

 Avoid using database column names as identifiers.

e Syntax errors can arise because PL/SQL checks the
database first for a column in the table.

 The names of local variables and formal parameters take
precedence over the names of database tables.

 The names of database table columns take precedence
over the names of local variables.

ORACLE

4-12 Copyright © 2009, Oracle. All rights reserved.

Manipulating Data Using PL/SQL

Make changes to database tables by using DML commands:

e INSERT
e UPDATE
DELETE
 DELETE l
e MERGE

INSERT — i

UPDATE MERGE

ORACLE

4-13 Copyright © 2009, Oracle. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES table.

Example:

BEGIN
INSERT INTO employees
(employee id, first name, last name, email,
hire date, job id, salary)
VALUES (employees seq.NEXTVAL, 'Ruth', 'Cores’',
'RCORES',sysdate, 'AD ASST', 4000);
END ;

/

ORACLE

4-14 Copyright © 2009, Oracle. All rights reserved.

Updating Data

Increase the salary of all employees who are stock clerks.

Example:
DECLARE
sal increase employees.salary%TYPE := 800;
BEGIN
UPDATE employees
SET salary = salary + sal increase
WHERE job id = 'ST CLERK';
END ;
/

ORACLE

4 -15 Copyright © 2009, Oracle. All rights reserved.

Deleting Data

Delete rows that belong to department 10 from the employees
table.

Example:

DECLARE
deptno employees.department id%TYPE := 10;
BEGIN
DELETE FROM employees
WHERE department id = deptno;
END ;
/

ORACLE

4-16 Copyright © 2009, Oracle. All rights reserved.

Merging Rows

Insert or update rows in the copy emp table to match the

employees table.

DECLARE

empno employees.employee id%TYPE := 100;
BEGIN
MERGE INTO copy emp C

USING employees e

ON (e.employee id = c.empno)

WHEN MATCHED THEN
UPDATE SET

c.first name = e.first name,
c.last name = e.last name,
c.email = e.email,

WHEN NOT MATCHED THEN
INSERT VALUES (e.employee id, e.first name, e.last name,
. . .,e.department id);
END ;
/

ORACLE

4-17 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor

e A cursor is a pointer to the private memory area allocated
by the Oracle server.
 There are two types of cursors:

— Implicit: Created and managed internally by the Oracle
server to process SQL statements

— Explicit: Explicitly declared by the programmer

ORACLE

4-19 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors

Using SQL cursor attributes, you can test the outcome of your
SQL statements.

SQL%FOUND Boolean attribute that evaluates to TRUE if the most

recent SQL statement returned at least one row

SQL%NOTFOUND Boolean attribute that evaluates to TRUE |f
the most recent SQL statement did not
return even one row

SQL%ROWCOUNT An integer value that represents the number of rows
affected by the most recent SQL statement

ORACLE

4-21 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors

Delete rows that have the specified employee ID from the
employees table. Print the number of rows deleted.

Example

VARIABLE rows deleted VARCHAR2 (30)
DECLARE

empno employees.employee id%TYPE := 176;
BEGIN

DELETE FROM employees

WHERE employee id = empno;

:rows _deleted := (SQL%ROWCOUNT | |

' row deleted.');
END;

/
PRINT rows deleted

ORACLE

4-22 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

e Embed DML statements, transaction control statements,
and DDL statements in PL/SQL

e Use the INTO clause, which is mandatory for all SELECT
statements in PL/SQL

« Differentiate between implicit cursors and explicit cursors

 Use SQL cursor attributes to determine the outcome of
SQL statements

ORACLE

4-23 Copyright © 2009, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
 Selecting data from a table
e |Inserting data into a table
 Updating data in a table
« Deleting a record from a table

ORACLE

4-24 Copyright © 2009, Oracle. All rights reserved.

Writing Control Structures

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* |dentify the uses and types of control structures
 Construct an IF statement
« Use CASE statements and CASE expressions

« Construct and identify different loop statements
 Use guidelines when using conditional control structures

ORACLE

5-2 Copyright © 2009, Oracle. All rights reserved.

Controlling Flow of Execution

for
loop .

while

ORACLE

5-3 Copyright © 2009, Oracle. All rights reserved.

IF Statements

Syntax:

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

ORACLE

5-4 Copyright © 2009, Oracle. All rights reserved.

Simple IF Statement

DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN
DBMS OUTPUT.PUT LINE(' I am a child ');
END IF;
END;
/
anarymous hlock completed

ORACLE

5-6 Copyright © 2009, Oracle. All rights reserved.

IF THEN ELSE Statement

SET SERVEROUTPUT ON
DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN
DBMS OUTPUT.PUT LINE(' I am a child ');
ELSE
DBMS OUTPUT.PUT LINE(' I am not a child ');
END IF;
END ;

/

anonymous hlock completed
I am not a child

ORACLE

5-7 Copyright © 2009, Oracle. All rights reserved.

IF ELSIF ELSE Clause

DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN
DBMS OUTPUT.PUT LINE(' I am a child ');
ELSIF myage < 20
THEN
DBMS OUTPUT.PUT LINE(' I am young ');
ELSIF myage < 30
THEN
DBMS OUTPUT.PUT LINE(' I am in my twenties');
ELSIF myage < 40
THEN
DBMS OUTPUT.PUT LINE(' I am in my thirties');
ELSE
DBMS OUTPUT.PUT LINE(' I am always young ');
END IF;
END;
/

anonymous block completed
I am in my thirties

ORACLE

5-8 Copyright © 2009, Oracle. All rights reserved.

NULL Values In IF Statements

DECLARE
myage number;
BEGIN
IF myage < 11
THEN
DBMS OUTPUT.PUT LINE(' I am a child ');
ELSE
DBMS OUTPUT.PUT LINE(' I am not a child ');
END IF;
END;
/

anonymous block completed
I am not a child

ORACLE

5-9 Copyright © 2009, Oracle. All rights reserved.

CASE Expressions

A CASE expression selects a result and returns it.

e To select the result, the CASE expression uses

expressions. The value returned by these expressions is
used to select one of several alternatives.

CASE selector
WHEN expressionl THEN resultl
WHEN expression2 THEN result2

WHEN expressionN THEN resultN
[ELSE resultN+1]
END ;

/

ORACLE

5-10 Copyright © 2009, Oracle. All rights reserved.

CASE Expressions: Example

SET SERVEROUTPUT ON
SET VERIFY OFF

DECLARE
grade CHAR(1l) := UPPER('&grade') ;
appraisal VARCHAR2 (20) ;

BEGIN
appraisal :=

CASE grade
WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good!'
WHEN 'C' THEN 'Good'
ELSE 'No such grade!'

END;

DBMS OUTPUT.PUT LINE ('Grade: '|| grade || '
Appraisal ' || appraisal);

END;

/

ORACLE

5-11 Copyright © 2009, Oracle. All rights reserved.

Searched CASE Expressions

DECLARE
grade CHAR(1l) := UPPER('&grade');
appraisal VARCHAR2 (20) ;
BEGIN
appraisal :=
CASE
WHEN grade = 'A' THEN 'Excellent'
WHEN grade IN ('B','C') THEN 'Good!'
ELSE 'No such grade!'
END ;
DBMS OUTPUT.PUT LINE ('Grade: '|| grade ||
Appraisal ' || appraisal);
END ;
/

ORACLE
5-12 Copyright © 2009, Oracle. All rights reserved.

CASE Statement

DECLARE
deptid NUMBER;
deptname VARCHAR2 (20) ;
emps NUMBER;
mngid NUMBER:= 108;
BEGIN
CASE mngid
WHEN 108 THEN
SELECT department id, department name
INTO deptid, deptname FROM departments
WHERE manager id=108;
SELECT count(*) INTO emps FROM employees
WHERE department id=deptid;
WHEN 200 THEN

END CASE;
DBMS OUTPUT.PUT LINE ('You are working in the '|| deptname| |
' department. There are '||emps ||' employees in this
department') ;
END;
/

ORACLE
5-13 Copyright © 2009, Oracle. All rights reserved.

Handling Nulls

When working with nulls, you can avoid some common
mistakes by keeping in mind the following rules:

« Simple comparisons involving nulls always yield NULL.
 Applying the logical operator NOT to a null yields NULL.

« If the condition yields NULL in conditional control

statements, Iits associated sequence of statements is not
executed.

ORACLE

5-14 Copyright © 2009, Oracle. All rights reserved.

Logic Tables

Build a simple Boolean condition with a comparison operator.

AND TRUE |FALSE| NULL OR TRUE |FALSE| NULL || NOT

TRUE | TRUE |FALSE| NULL || TRUE | TRUE | TRUE | TRUE || TRUE |FALSE
FALSE | FALSE |FALSE |FALSE||FALSE| TRUE |FALSE| NULL ||FALSE | TRUE
NULL | NULL |FALSE| NULL || NULL | TRUE | NULL | NULL || NULL |NULL

ORACLE

Copyright © 2009, Oracle. All rights reserved.

5-15

Boolean Conditions

What is the value of £1ag in each case”?

flag := reorder flag AND available flag;
REORDER FLAG AVAILABLE FLAG FLAG
TRUE TRUE ? (1)
TRUE FALSE ? (2)
NULL TRUE ? (3)
NULL FALSE ? (4)

ORACLE

5-16 Copyright © 2009, Oracle. All rights reserved.

lterative Control: LOOP Statements

* Loops repeat a statement or sequence of statements
multiple times.
 There are three loop types:

— Basic loop
— FOR loop

— WHILE loop

P
s

ORACLE

5-17 Copyright © 2009, Oracle. All rights reserved.

Basic Loops

Syntax:

LOOP

statementl;

EXIT [WHEN condition];
END LOOP;

ORACLE

5-18 Copyright © 2009, Oracle. All rights reserved.

Basic Loops

Example
DECLARE
countryid locations.country id%TYPE := 'CA';
loc id locations.location id%TYPE;
counter NUMBER (2) := 1;
new city locations.city%TYPE := 'Montreal';
BEGIN

SELECT MAX (location id) INTO loc id FROM locations
WHERE country id = countryid;

LOOP
INSERT INTO locations(location id, city, country id)

VALUES ((loc_id + counter), new city, countryid);

counter := counter + 1;
EXIT WHEN counter > 3;
END LOOP;
END;

/

ORACLE

5-19 Copyright © 2009, Oracle. All rights reserved.

WHILE Loops

Syntax:

WHILE condition LOOP
statementl;
statement?2;

END LOOP;

Use the WHILE loop to repeat statements while a condition is
TRUE.

ORACLE

5-20 Copyright © 2009, Oracle. All rights reserved.

WHILE Loops

Example
DECLARE
countryid locations.country id%TYPE := 'CA';
loc id locations.location id%TYPE;
new city locations.city%TYPE := 'Montreal'’;
counter NUMBER := 1;
BEGIN

SELECT MAX (location id) INTO loc id FROM locations
WHERE country id = countryid;
WHILE counter <= 3 LOOP
INSERT INTO locations(location id, city, country id)
VALUES ((loc_id + counter), new city, countryid):;
counter := counter + 1;
END LOOP;
END;
/

ORACLE

5-21 Copyright © 2009, Oracle. All rights reserved.

FOR Loops

« Use a FOR loop to shortcut the test for the number of

iterations.
« Do not declare the counter; it is declared implicitly.
* 'lower bound .. upper bound'lIs required syntax.

FOR counter IN [REVERSE]
lower bound..upper bound LOOP
statementl;
statement2;

END LOOP;

ORACLE

5-22 Copyright © 2009, Oracle. All rights reserved.

FOR Loops

Example:
DECLARE
countryid locations.country id%TYPE := 'CA';
loc id locations.location id%TYPE;
new city locations.city%TYPE := 'Montreal';
BEGIN

SELECT MAX (location id) INTO loc id
FROM locations
WHERE country id = countryid;
FOR i IN 1..3 LOOP
INSERT INTO locations(location id, city, country id)
VALUES ((loc id + i), new city, countryid);
END LOOP;
END;
/

ORACLE

5-24 Copyright © 2009, Oracle. All rights reserved.

FOR Loops

Guidelines
 Reference the counter within the loop only; it is undefined
outside the loop.

Do not reference the counter as the target of an
assignment.

* Neither loop bound should be NULL.

ORACLE

5-25 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Loops

 Use the basic loop when the statements inside the loop
must execute at least once.

« Use the WHILE loop if the condition must be evaluated at
the start of each iteration.

« Use a FOR loop if the number of iterations is known.

ORACLE

5-26 Copyright © 2009, Oracle. All rights reserved.

Nested Loops and Labels

 You can nest loops to multiple levels.

« Use labels to distinguish between blocks and loops.

e Exit the outer loop with the EXIT statement that references
the label.

ORACLE
5-27 Copyright © 2009, Oracle. All rights reserved.

Nested Loops and Labels

BEGIN
<<Outer loop>>
LOOP
counter := counter+l;

EXIT WHEN counter>10;
<<Inner loop>>

LOOP
EXIT Outer loop WHEN total done = 'YES';
-- Leave both loops
EXIT WHEN inner done = 'YES';

-- Leave inner loop only

END LOOP Inner loop;

END LOOP Outer loop;
END;

/

ORACLE

5-28 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to change the
logical flow of statements by using the following control
structures:

e Conditional (IF statement)
« CASE expressions and CASE statements
 Loops:

— Basic loop

— FOR loop

— WHILE loop
e EXIT statements

ORACLE

5-29 Copyright © 2009, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
« Performing conditional actions by using the IF statement

« Performing iterative steps by using the loop structure

ORACLE

5-30 Copyright © 2009, Oracle. All rights reserved.

Working with Composite
Data Types

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Create user-defined PL/SQL records
 Create arecord with the $ROWTYPE attribute

e Create an INDEX BY table
e Create an INDEX BY table of records

 Describe the differences among records, tables, and tables
of records

ORACLE

6-2 Copyright © 2009, Oracle. All rights reserved.

Composite Data Types

e Can hold multiple values (unlike scalar types)

* Are of two types:
— PL/SQL records

— PL/SQL collections
— INDEX BY tables or associative arrays

~ Nested table
_ VARRAY

ORACLE

6-3 Copyright © 2009, Oracle. All rights reserved.

Composite Data Types

 Use PL/SQL records when you want to store values of
different data types but only one occurrence at a time.

 Use PL/SQL collections when you want to store values of
the same data type.

ORACLE

6-4 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Records

e Must contain one or more components (called fields) of
any scalar, RECORD, or INDEX BY table data type

e Are similar to structures in most 3GL languages (including
C and C++)

e Are user defined and can be a subset of a row In a table
 Treat a collection of fields as a logical unit

« Are convenient for fetching a row of data from a table for
processing

ORACLE

6-5 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

Syntax:

(::) TYPE type name IS RECORD
(field declaration[, field declaration]..);

(::) identifier type name;

field declaration:

field name {field type | variable%TYPE
| table.column$TYPE | table%ROWTYPE}
[[NOT NULL] {:= | DEFAULT} expr]

ORACLE

6-6 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of a new
employee.

Example:

TYPE emp record type IS RECORD
(last name VARCHAR2 (25) ,

job id VARCHAR2 (10) ,
salary NUMBER (8,2)) ;
emp record emp record type;

ORACLE

6-7 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Record Structure

Fieldl (data type) Field2 (data type) Field3 (data type)

Example:

Fieldl (data type) Field2 (data type) Field3 (data type)
employee id number(6) last name varchar2(25) job id varchar2(10)

T 100 King AD_PRES

ORACLE

6-8 Copyright © 2009, Oracle. All rights reserved.

%SROWTYPE Attribute

 Declare a variable according to a collection of columns in a
database table or view.
 Prefix $ROWTYPE with the database table or view.

* Fields in the record take their names and data types from
the columns of the table or view.

Syntax:

DECLARE
identifier reference%ROWTYPE;

ORACLE

6-9 Copyright © 2009, Oracle. All rights reserved.

Advantages of Using $SROWTYPE

 The number and data types of the underlying database
columns need not be known—and in fact might change at
run time.

e The $ROWTYPE attribute is useful when retrieving a row
with the SELECT * statement.

ORACLE

6-11 Copyright © 2009, Oracle. All rights reserved.

%SROWTYPE Attribute

DEFINE employee number = 124
DECLARE
emp rec employees%ROWTYPE;
BEGIN
SELECT * INTO emp rec FROM employees
WHERE employee id = &employee number;
INSERT INTO retired emps (empno, ename, job, mgr,
hiredate, leavedate, sal, comm, deptno)
VALUES (emp rec.employee id, emp rec.last name,
emp rec.job id,emp rec.manager id,
emp rec.hire date, SYSDATE, emp rec.salary,
emp rec.commission pct, emp rec.department id);
END ;
/

ORACLE

6-12 Copyright © 2009, Oracle. All rights reserved.

Inserting a Record
by Using $SROWTYPE

DEFINE employee number = 124
DECLARE
emp rec retired emps%ROWTYPE;

BEGIN
SELECT employee id, last name, job id, manager id,

hire date, hire date, salary, commission pct,
department id INTO emp rec FROM employees
WHERE employee id = &employee number;

INSERT INTO retired emps VALUES emp rec;

END;

/
SELECT * FROM retired emps;

ORACLE

6-13 Copyright © 2009, Oracle. All rights reserved.

Updating a Row in a Table
by Using a Record

SET SERVEROUTPUT ON
SET VERIFY OFF
DEFINE employee number = 124
DECLARE
emp rec retired emps%ROWIYPE;
BEGIN
SELECT * INTO emp rec FROM retired emps;
emp rec.leavedate:=SYSDATE;
UPDATE retired emps SET ROW = emp rec WHERE
empno=&employee number;
END ;

/
SELECT * FROM retired emps;

ORACLE

6-14 Copyright © 2009, Oracle. All rights reserved.

INDEX BY Tables or Associative Arrays

 Are PL/SQL structures with two columns:
— Primary key of integer or string data type
— Column of scalar or record data type

 Are unconstrained in size. However, the size depends on
the values that the key data type can hold.

ORACLE

6-15 Copyright © 2009, Oracle. All rights reserved.

Creating an INDEX BY Table

Syntax:
TYPE type name IS TABLE OF
{column type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table%ROWTYPE
[INDEX BY PLS INTEGER | BINARY INTEGER
| VARCHAR2 (<size>)];
identifier type name;

Declare an INDEX BY table to store the last names of
employees:

TYPE ename table type IS TABLE OF
employees.last name%TYPE
INDEX BY PLS INTEGER;

ename table ename table type;

ORACLE

6-16 Copyright © 2009, Oracle. All rights reserved.

INDEX BY Table Structure

Unique key Value
1 Jones

5 Smith
3 Maduro

PLS INTEGER Scalar

ORACLE

6-18 Copyright © 2009, Oracle. All rights reserved.

Creating an INDEX BY Table

DECLARE
TYPE ename table type IS TABLE OF
employees.last name%TYPE
INDEX BY PLS INTEGER;
TYPE hiredate table type IS TABLE OF DATE
INDEX BY PLS INTEGER;

ename table ename table type;

hiredate table hiredate table type;
BEGIN

ename table (1) := 'CAMERON' ;

hiredate table(8) := SYSDATE + 7;

IF ename table.EXISTS (1) THEN
INSERT INTO ...

END;

/
ORACLE

6-19 Copyright © 2009, Oracle. All rights reserved.

Using INDEX BY Table Methods

The following methods make INDEX BY tables easier to use:

e EXISTS e PRIOR
e COUNT e NEXT
 FIRST and LAST DELETE

ORACLE

6 -20 Copyright © 2009, Oracle. All rights reserved.

INDEX BY Table of Records

Define an INDEX BY table variable to hold an entire row from a
table.

Example:

DECLARE
TYPE dept table type IS TABLE OF
departments%$ROWTYPE
INDEX BY PLS INTEGER;
dept table dept table type;
-- Each element of dept table is a record

ORACLE

6-21 Copyright © 2009, Oracle. All rights reserved.

INDEX BY Table of Records: Example

SET SERVEROUTPUT ON
DECLARE
TYPE emp table type IS TABLE OF
employees%ROWTYPE INDEX BY PLS INTEGER;
my emp table emp table type;

max count NUMBER (3) := 104;
BEGIN

FOR i IN 100..max count

LOOP

SELECT * INTO my emp table(i) FROM employees
WHERE employee id = i;

END LOOP;
FOR i IN my emp table.FIRST..my emp table.LAST
LOOP
DBMS OUTPUT.PUT LINE (my emp table(i).last name);
END LOOP;
END ;

/

ORACLE

6-23 Copyright © 2009, Oracle. All rights reserved.

Nested Tables

Bombay

Sydney
Oxford
London

TN

2GB—™1=

ORACLE

6-24 Copyright © 2009, Oracle. All rights reserved.

VARRAY

1 | Bombay
2 | Sydney
3 | Oxford
4 | London
10 | Tokyo

ORACLE

6 - 26 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

 Define and reference PL/SQL variables of composite data

types
— PL/SQL record
— INDEX BY table

— INDEX BY table of records
 Define a PL/SQL record by using the $ROWTYPE attribute

ORACLE

6 -27 Copyright © 2009, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
 Declaring INDEX BY tables

 Processing data by using INDEX BY tables
 Declaring a PL/SQL record
 Processing data by using a PL/SQL record

ORACLE

6-28 Copyright © 2009, Oracle. All rights reserved.

Using Explicit Cursors

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Distinguish between implicit and explicit cursors

* Discuss the reasons for using explicit cursors
 Declare and control explicit cursors

« Use simple loops and cursor FOR loops to fetch data
 Declare and use cursors with parameters

 Lock rows with the FOR UPDATE clause

e Reference the current row with the WHERE CURRENT OF
clause

ORACLE

7-2 Copyright © 2009, Oracle. All rights reserved.

cursors

Every SQL statement executed by the Oracle server has an
associated individual cursor:

* Implicit cursors: Declared and managed by PL/SQL for all
DML and PL/SQL SELECT statements

« Explicit cursors: Declared and managed by the
programmer

e

ORACLE

7-3 Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Operations

Table
100 King AD PRES
101 Kochhar AD VP
102 De Haan AD VP

Active set

139 Seo ST CLERK
140 Patel ST CLERK

ORACLE

7-4 Copyright © 2009, Oracle. All rights reserved.

Controlling Explicit Cursors

No

DECLARE[—| OPEN [|—| FETCH Yes CLOSE

* Createa °* ldentify the ¢ Load the * Testfor * Releasethe

named active set. current existing active set.
SQL area. row into rows.
variables.
* Return to
FETCH if
rows are
found.

ORACLE

7-5 Copyright © 2009, Oracle. All rights reserved.

Controlling Explicit Cursors

@ Open the cursor. /
Cursor

pointer

@ Fetch arow.

Cursor
pointer

Cursor
pointer

@ Close the cursor.

ORACLE

7-6 Copyright © 2009, Oracle. All rights reserved.

Declaring the Cursor

Syntax:

CURSOR cursor name IS
select statement;

Examples:

DECLARE

CURSOR emp cursor IS
SELECT employee id, last name FROM employees

WHERE department id =30;

DECLARE
locid NUMBER:= 1700;
CURSOR dept cursor IS
SELECT * FROM departments

WHERE location id = locid;

ORACLE
Copyright © 2009, Oracle. All rights reserved.

7-7

Opening the Cursor

DECLARE
CURSOR emp cursor IS
SELECT employee id, last name FROM employees
WHERE department id =30;
BEGIN
OPEN emp cursor;

ORACLE

7-9 Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp cursor IS
SELECT employee id, last name FROM employees
WHERE department id =30;
empno employees.employee id%TYPE;
lname employees.last name%TYPE;
BEGIN
OPEN emp cursor;
FETCH emp cursor INTO empno, lname;

DBMS OUTPUT.PUT LINE(empno ||' '||lname);

END;
/

ORACLE

7-10 Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp cursor IS
SELECT employee id, last name FROM employees
WHERE department id =30;
empno employees.employee id%TYPE;
lname employees.last name%TYPE;
BEGIN
OPEN emp cursor;
LOOP
FETCH emp cursor INTO empno, lname;
EXIT WHEN emp cursor%NOTFOUND;
DBMS OUTPUT.PUT LINE(empno |
END LOOP;

' 1| |1name) ;

END;
/

ORACLE

7-12 Copyright © 2009, Oracle. All rights reserved.

Closing the Cursor

LOOP
FETCH emp cursor INTO empno, lname;
EXIT WHEN emp cursor%NOTFOUND;
DBMS OUTPUT.PUT LINE(empno |
END LOOP;
CLOSE emp cursor;
END;

/

' 1| |1name) ;

ORACLE

7-13 Copyright © 2009, Oracle. All rights reserved.

Ccursors and Records

Process the rows of the active set by fetching values into a
PL/SQL record.

DECLARE
CURSOR emp cursor IS
SELECT employee id, last name FROM employees
WHERE department id =30;
emp record emp cursor%3ROWTYPE;
BEGIN
OPEN emp cursor;
LOOP
FETCH emp cursor INTO emp record;

ORACLE

7-14 Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

Syntax:

FOR record name IN cursor name LOOP
statementl;

statement2;

END LOOP;

The cursor FOR loop is a shortcut to process explicit
Cursors.

« Implicit open, fetch, exit, and close occur.
 The record is implicitly declared.

ORACLE

7-15 Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

SET SERVEROUTPUT ON
DECLARE
CURSOR emp cursor IS
SELECT employee id, last name FROM employees
WHERE department id =30;
BEGIN
FOR emp record IN emp cursor
LOOP
DBMS OUTPUT.PUT LINE(emp record.employee id
||* ' | |emp record.last name);
END LOOP;
END ;

/

ORACLE

7-16 Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description
%$ISOPEN Boolean Evaluates to TRUE if the cursor is open
SNOTFOUND Boolean Evaluates to TRUE if the most recent fetch

does not return a row

%FOUND Boolean Evaluates to TRUE if the most recent fetch
returns a row; complement of $NOTFOUND

%ROWCOUNT Boolean Evaluates to the total number of rows
returned so far

ORACLE

7-17 Copyright © 2009, Oracle. All rights reserved.

%ISOPEN Attribute

 Fetch rows only when the cursor is open.

 Use the $ISOPEN cursor attribute before performing a
fetch to test whether the cursor is open.

Example:

IF NOT emp cursor%ISOPEN THEN
OPEN emp cursor;
END IF;
LOOP
FETCH emp cursor...

ORACLE

7-18 Copyright © 2009, Oracle. All rights reserved.

%$ROWCOUNT and $NOTFOUND:. Example

SET SERVEROUTPUT ON
DECLARE
empno employees.employee id%TYPE;
ename employees.last name%TYPE;
CURSOR emp cursor IS SELECT employee id,
last name FROM employees;
BEGIN
OPEN emp cursor;
LOOP
FETCH emp cursor INTO empno, ename;
EXIT WHEN emp cursor3ROWCOUNT > 10 OR
emp cursor%sNOTFOUND;
DBMS OUTPUT.PUT LINE (TO CHAR (empno)
| |" '|| ename);
END LOOP;
CLOSE emp cursor;
END ;

/
ORACLE

7-19 Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops Using Subqueries

There is no need to declare the cursor.

Example:

SET SERVEROUTPUT ON
BEGIN
FOR emp record IN (SELECT employee id, last name
FROM employees WHERE department id =30)
LOOP
DBMS OUTPUT.PUT LINE(emp record.employee id ||
'| |emp record.last name);
END LOOP;
END ;

/

ORACLE

7-20 Copyright © 2009, Oracle. All rights reserved.

cursors with Parameters

Syntax:

CURSOR cursor name
[(parameter name datatype, ...)]

IS
select statement;

 Pass the parameter values to a cursor when the cursor is
opened and the query is executed.

* Open an explicit cursor several times with a different active
set each time.

OPEN cursor name (parameter value,.....)

ORACLE

7-21 Copyright © 2009, Oracle. All rights reserved.

cursors with Parameters

SET SERVEROUTPUT ON
DECLARE
CURSOR emp cursor (deptno NUMBER) IS
SELECT employee id, last name
FROM employees
WHERE department id = deptno;
dept id NUMBER;
lname VARCHAR2 (15) ;
BEGIN
OPEN emp cursor (10);
CLOSE emp cursor;
OPEN emp cursor (20);

ORACLE

7-22 Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause

Syntax:

SELECT ...

FROM oo
FOR UPDATE [OF column reference] [NOWAIT | WAIT n];

« Use explicit locking to deny access to other sessions for
the duration of a transaction.

 Lock the rows before the update or delete.

ORACLE

7-23 Copyright © 2009, Oracle. All rights reserved.

WHERE CURRENT OF Clause

Syntax:

WHERE CURRENT OF cursor ;

« Use cursors to update or delete the current row.

* Include the FOR UPDATE clause in the cursor query to lock
the rows first.

« Use the WHERE CURRENT OF clause to reference the
current row from an explicit cursor.

UPDATE employees

SET salary = .
WHERE CURRENT OF emp cursor;

ORACLE

7-25 Copyright © 2009, Oracle. All rights reserved.

Cursors with Subqueries

Example:

DECLARE
CURSOR my cursor IS
SELECT tl.department id, tl.department name,
t2.staff
FROM departments tl, (SELECT department id,
COUNT (*) AS staff

FROM employees
GROUP BY department id) t2

WHERE tl.department id = t2.department id

AND t2.staff >= 3;

ORACLE

7-26 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

« Distinguish cursor types:

— Implicit cursors are used for all DML statements and single-
row queries.

— EXxplicit cursors are used for queries of zero, one, or more
rows.

 Create and handle explicit cursors

 Use simple loops and cursor FOR loops to handle multiple
rows in the cursors

« Evaluate the cursor status by using the cursor attributes

e Use the FOR UPDATE and WHERE CURRENT OF clauses
to update or delete the current fetched row

ORACLE

7-27 Copyright © 2009, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:

 Declaring and using explicit cursors to query rows of a
table

e Using a cursor FOR loop
e Applying cursor attributes to test the cursor status

« Declaring and using cursors with parameters
e Using the FOR UPDATE and WHERE CURRENT OF clauses

ORACLE

7-28 Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

e Define PL/SQL exceptions

 Recognize unhandled exceptions

« List and use different types of PL/SQL exception handlers
e Trap unanticipated errors

 Describe the effect of exception propagation in nested
blocks

 Customize PL/SQL exception messages

ORACLE

8-2 Copyright © 2009, Oracle. All rights reserved.

Example of an Exception

SET SERVEROUTPUT ON

DECLARE
lname VARCHAR2 (15) ;

BEGIN
SELECT last name INTO lname FROM employees WHERE
first name='John';

DBMS OUTPUT.PUT LINE ('John''s last name is : '
| | Ilname) ;

END;
/

ORACLE

8-3 Copyright © 2009, Oracle. All rights reserved.

Example of an Exception

SET SERVEROUTPUT ON

DECLARE
lname VARCHAR2 (15) ;

BEGIN
SELECT last name INTO lname FROM employees WHERE
first name='John';

DBMS OUTPUT.PUT LINE ('John''s last name is : '
| | lname) ;

EXCEPTION
WHEN TOO MANY ROWS THEN
DBMS OUTPUT.PUT LINE (' Your select statement

retrieved multiple rows. Consider using a
cursor.') ;

END;
/

ORACLE

8-4 Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions with PL/SQL

 An exception is a PL/SQL error that is raised during
program execution.
 An exception can be raised:
— Implicitly by the Oracle server
— Explicitly by the program
 An exception can be handled:
— By trapping it with a handler
— By propagating it to the calling environment

ORACLE

8-5 Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions

A

R

o 2 s the _
“I-" exception | Terminate
- -~ rapped? NoO abruptly.
~ o

,-'ﬁ""

S

-

-

A 4

Exception | Execute statements Propagate the
IS raised. In the EXCEPTION exception
secron.
Terminate
gracefully.

ORACLE

8-6 Copyright © 2009, Oracle. All rights reserved.

Exception Types

e Predefined Oracle server

_ Implicitly raised
 Non-predefined Oracle server

 User-defined Explicitly raised

ORACLE

8-7 Copyright © 2009, Oracle. All rights reserved.

Trapping Exceptions

Syntax:

EXCEPTION

WHEN exceptionl [OR exception2 . . .] THEN
statementl;
statement2;
[WHEN exception3 [OR exception4 . . .] THEN
statementl;
statement2;
e o o]
[WHEN OTHERS THEN
statementl;
statement2;

e . .l

ORACLE

8-8 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Trapping Exceptions

e The EXCEPTION keyword starts the exception handling
section.

 Several exception handlers are allowed.

 Only one handler is processed before leaving the block.
e WHEN OTHERS IS the last clause.

ORACLE

8-10 Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined Oracle Server Errors

 Reference the predefined name in the exception-handling
routine.
 Sample predefined exceptions:
— NO DATA FOUND
— TOO MANY ROWS
— INVALID CURSOR
— ZERO DIVIDE
— DUP_ VAL ON INDEX

ORACLE

8-11 Copyright © 2009, Oracle. All rights reserved.

Trapping Non-Predefined
Oracle Server Errors

Declare »| Associate »| Reference
Declarative section EXCEPTION section
Name the Use PRAGMA Handle the raised
exception. EXCEPTION INIT. exception.

ORACLE

8-14 Copyright © 2009, Oracle. All rights reserved.

Non-Predefined Error

To trap Oracle server error number —01400
(“cannot insert NULL™):

SET SERVEROUTPUT ON

DECLARE

insert excep EXCEPTION; 4—@
PRAGMA EXCEPTION INIT

(insert excep, -01400); ‘_@
BEGIN

INSERT INTO departments
(department id, department name) VALUES (280, NULL) ;

EXCEPTION v @
WHEN |insert excep|THEN
DBMS OUTPUT.PUT LINE('INSERT OPERATION FAILED') ;
DBMS OUTPUT.PUT LINE (SQLERRM) ;

END;
/

ORACLE

8-15 Copyright © 2009, Oracle. All rights reserved.

Functions for Trapping Exceptions

e SQLCODE: Returns the numeric value for the error code

* SQLERRM: Returns the message associated with the error
number

ORACLE

8-16 Copyright © 2009, Oracle. All rights reserved.

Functions for Trapping Exceptions

Example:

DECLARE

error code NUMBER ;

error message VARCHAR2 (255);
BEGIN

EXCEPTION

WHEN OTHERS THEN

ROLLBACK;
error code :=|SQLCODE |;
error message :=|SQLERRM |;

INSERT INTO errors (e user, e date, error code,
error message) VALUES (USER,SYSDATE, error code,

error message) ;
END ;
/

ORACLE

8-17 Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

Declare * Raise *I Reference
Declarative Executable Exception-handling
section section section
Name the Explicitly raise Handle the raised
exception. the exception by exception.
using the RAISE
statement.

ORACLE

8-18 Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

ACCEPT deptno PROMPT 'Please enter the department number:'
ACCEPT name PROMPT 'Please enter the department name:'
DECLARE

invalid department EXCEPTION; 4—@
name VARCHAR2 (20) :="'&name';
deptno NUMBER :=&deptno;

BEGIN
UPDATE departments
SET department name = name

WHERE department id = deptno;
IF SQL%NOTFOUND THEN

RAISE invalid department; F————<::>
END IF;

COMMIT ; @
EXCEPTION 1

WHEN| invalid department | THEN

DBMS OUTPUT.PUT LINE('No such department id.');
END ;

/

ORACLE

8-19 Copyright © 2009, Oracle. All rights reserved.

Calling Environments

SQL*Plus Displays error number and message to screen

SQL Developer Displays error number and message to screen

Oracle Developer Accesses error number and message in an

Forms ON-ERROR trigger by means of the ERROR CODE
and ERROR TEXT packaged functions

Precompiler Accesses the exception number through the SQLCA

application data structure

An enclosing PL/SQL | Traps the exception in exception-handling routine of
block enclosing block

ORACLE

8-20 Copyright © 2009, Oracle. All rights reserved.

Propagating Exceptions in a Subblock

DECLARE
NoO_rows exception;
integrity exception;
PRAGMA EXCEPTION INIT (integrity, -2292);
BEGIN
FOR c record IN emp cursor LOOP
Subblocks can handle BRGIN
. SELECT ...
an exceptlpn Oor pass UPDATE ...
the exception to the IF SQL%NOTFOUND THEN
enclosing block. RAISE no rows;
END IF;
END;
END LOOP;
EXCEPTION
WHEN integrity THEN ...
WHEN no rows THEN ...
END;
/

ORACLE

8-21 Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

Syntax:

raise application error (error number,
messagel[, {TRUE | FALSE}]);

 You can use this procedure to issue user-defined error
messages from stored subprograms.

e You can report errors to your application and avoid
returning unhandled exceptions.

ORACLE

8-22 Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

« Used in two different places:
— Executable section
— EXxception section

e Returns error conditions to the user in a manner consistent
with other Oracle server errors

ORACLE

8-23 Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

Executable section:

BEGIN

DELETE FROM employees
WHERE manager id = v _mgr;
IF SQL%NOTFOUND THEN
RAISE APPLICATION ERROR(-20202,
'"This is not a valid manager') ;
END IF;

Exception section:

EXCEPTION
WHEN NO DATA FOUND THEN
RAISE APPLICATION ERROR (-20201,
'Manager is not a valid employee.');

END;
/

ORACLE

8-24 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
e Define PL/SQL exceptions
e Add an EXCEPTION section to the PL/SQL block to deal
with exceptions at run time
 Handle different types of exceptions:
— Predefined exceptions
— Non-predefined exceptions
— User-defined exceptions

« Propagate exceptions in nested blocks and call
applications

ORACLE

8-25 Copyright © 2009, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:
 Handling named exceptions
 Creating and invoking user-defined exceptions

ORACLE

8-26 Copyright © 2009, Oracle. All rights reserved.

Creating Stored Procedures and Functions

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Differentiate between anonymous blocks and subprograms

 Create a simple procedure and invoke it from an
anonymous block

 Create a simple function
 Create a simple function that accepts a parameter
« Differentiate between procedures and functions

ORACLE

9-2 Copyright © 2009, Oracle. All rights reserved.

Procedures and Functions

 Are named PL/SQL blocks
 Are called PL/SQL subprograms

« Have block structures similar to anonymous blocks:
— Optional declarative section (without DECLARE keyword)
— Mandatory executable section
— Optional section to handle exceptions

ORACLE

9-3 Copyright © 2009, Oracle. All rights reserved.

Differences Between Anonymous Blocks and

Subprograms
Anonymous Blocks Subprograms
Unnamed PL/SQL blocks Named PL/SQL blocks
Compiled every time Compiled only once
Not stored in the database Stored in the database
Cannot be invoked by other Named and, therefore, can be invoked by
applications other applications
Do not return values Subprograms called functions must return
values.
Cannot take parameters Can take parameters

ORACLE

9-4 Copyright © 2009, Oracle. All rights reserved.

Procedure: Syntax

CREATE [OR REPLACE] PROCEDURE procedure name
[(argumentl [model] datatypel,
argument2 [mode2] datatype2,
e . .)]
IS|AS
procedure body;

ORACLE

9-5 Copyright © 2009, Oracle. All rights reserved.

Procedure: Example

CREATE TABLE dept AS SELECT * FROM departments;
CREATE PROCEDURE add dept IS

dept id dept.department id%TYPE;

dept name dept.department name%TYPE;
BEGIN

dept id:=280;

dept name:='ST-Curriculum';

INSERT INTO dept (department id,department name)
VALUES (dept id,dept name) ;

DBMS OUTPUT.PUT LINE(' Inserted '] |

SQL%ROWCOUNT | |' row ');
END ;

/

ORACLE

9-6 Copyright © 2009, Oracle. All rights reserved.

Invoking the Procedure

BEGIN
add dept;
END ;

/

SELECT department id, department name FROM dept
WHERE department id=280;

anomymous block completed
Inserted 1 row

DEF‘AF{TMENT_ID CEPARTMEMT_MAME
1 280 5T-Curriculum

ORACLE

9-8 Copyright © 2009, Oracle. All rights reserved.

Function: Syntax

CREATE [OR REPLACE] FUNCTION function name
[(argumentl [model] datatypel,

argument2 [mode2] datatype2,
. .)1

RETURN datatype

IS|AS

function body;

ORACLE

9-9 Copyright © 2009, Oracle. All rights reserved.

Function: Example

CREATE FUNCTION check sal RETURN Boolean IS
dept id employees.department id%TYPE;

empno employees.employee id%TYPE;

sal employees.salary%TYPE;

avg sal employees.salary%TYPE;
BEGIN

empno:=205;
SELECT salary,department id INTO sal,dept id
FROM employees WHERE employee id= empno;
SELECT avg(salary) INTO avg sal FROM employees
WHERE department id=dept id;
IF sal > avg sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION
WHEN NO DATA FOUND THEN
RETURN NULL;
END;
/

ORACLE

9-10 Copyright © 2009, Oracle. All rights reserved.

Invoking the Function

SET SERVEROUTPUT ON

BEGIN

IF (check sal IS NULL) THEN

DBMS OUTPUT.PUT LINE('The function returned
NULL due to exception');

ELSIF (check sal) THEN

DBMS OUTPUT.PUT LINE('Salary > average');
ELSE

DBMS OUTPUT.PUT LINE('Salary < average');
END IF;

END;

/

ananymous hlock completed
Salary = average

ORACLE

9-11 Copyright © 2009, Oracle. All rights reserved.

Passing a Parameter to the Function

DROP FUNCTION check sal;
CREATE FUNCTION check sal (empno employees.employee id%TYPE)
RETURN Boolean IS
dept id employees.department id%TYPE;
sal employees.salary%TYPE;
avg sal employees.salary%TYPE;
BEGIN
SELECT salary,department id INTO sal,dept id
FROM employees WHERE employee id=empno;
SELECT avg(salary) INTO avg sal FROM employees
WHERE department id=dept id;
IF sal > avg sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION ...

ORACLE

9-12 Copyright © 2009, Oracle. All rights reserved.

Invoking the Function with a Parameter

BEGIN
DBMS OUTPUT.PUT LINE('Checking for employee with id 205');
IF (check sal(205) IS NULL) THEN
DBMS OUTPUT.PUT LINE('The function returned
NULL due to exception');
ELSIF (check sal(205)) THEN
DBMS OUTPUT.PUT LINE('Salary > average');
ELSE
DBMS OUTPUT.PUT LINE('Salary < average');
END IF;
DBMS OUTPUT.PUT LINE ('Checking for employee with id 70');
IF (check sal(70) IS NULL) THEN
DBMS OUTPUT.PUT LINE('The function returned
NULL due to exception');
ELSIF (check sal(70)) THEN
END IF;
END ;

/

ORACLE

9-13 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

e Create a simple procedure

* Invoke the procedure from an anonymous block
 Create a simple function

 Create a simple function that accepts parameters
* Invoke the function from an anonymous block

ORACLE

9-14 Copyright © 2009, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
e Converting an existing anonymous block to a procedure
* Modifying the procedure to accept a parameter
« Writing an anonymous block to invoke the procedure

ORACLE

9-15 Copyright © 2009, Oracle. All rights reserved.

REF Cursors

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Cursor Variables

e Cursor variables are like C or Pascal pointers, which hold
the memory location (address) of an item instead of the
item itself.

 In PL/SQL, a pointer is declared as REF X, where REF IS
short for REFERENCE and X stands for a class of objects.

e A cursor variable has the data type REF CURSOR.
e A cursor is static, but a cursor variable is dynamic.
 Cursor variables give you more flexibility.

ORACLE

C-2 Copyright © 2009, Oracle. All rights reserved.

Why Use Cursor Variables?

* You can use cursor variables to pass query result sets
between PL/SQL stored subprograms and various clients.

« PL/SQL can share a pointer to the query work area in
which the result set is stored.

 You can pass the value of a cursor variable freely from one
scope to another.

* You can reduce network traffic by having a PL/SQL block
open (or close) several host cursor variables in a single
round trip.

ORACLE

C-3 Copyright © 2009, Oracle. All rights reserved.

Defining REF CURSOR Types

« Define a REF CURSOR type:

Define a REF CURSOR type

TYPE ref type name IS REF CURSOR [RETURN
return typel;

 Declare a cursor variable of that type:

ref cv ref type name;

« Example:

DECLARE

TYPE DeptCurTyp IS REF CURSOR RETURN
departments%$ROWTYPE;

dept cv DeptCurTyp;

ORACLE

C-4 Copyright © 2009, Oracle. All rights reserved.

Using the OPEN-FOR, FETCH,
and CLOSE Statements

e The OPEN-FOR Statement associates a cursor variable

with a multirow query, executes the query, identifies the
result set, and positions the cursor to point to the first row
of the result set.

e The FETCH statement returns a row from the result set of a

multirow query, assigns the values of select-list items to
corresponding variables or fields in the INTO clause,

Increments the count kept by $ROWCOUNT, and advances
the cursor to the next row.

e The CLOSE statement disables a cursor variable.

ORACLE

C-7 Copyright © 2009, Oracle. All rights reserved.

An Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp CVv EmpCurTyp:;
emp rec employees%ROWTYPE;
sql stmt VARCHAR2 (200) ;
my Jjob VARCHAR2 (10) := 'ST CLERK';
BEGIN
sql stmt := 'SELECT * FROM employees
WHERE job id = :j';
OPEN emp cv FOR sql stmt USING my job;
LOOP
FETCH emp cv INTO emp rec;
EXIT WHEN emp cv3NOTFOUND;
-- process record
END LOOP;
CLOSE emp cv;
END;

/

ORACLE

C-10 Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper 10g

e Oracle JDeveloper : Start Page i -

File Edit “iew 5Search MNawigate Run Debug Refactor “Yersioning Tools Window Help

FeoEd - @ 90 Y BE A4 aida- - &-b@ES.

Applicati-:nns IEBHCD...] E] @Star‘t Page] E

RREQEa0:aa00R

Applicatin:lns &=
ORACLE

Developing J2EE Applic

Learn about m Get started on your % Ly
JDeveloper owh gt
What's new & Check for product c]
updates and newy : C::E
Use the tutorials features a

.= tart Page - Structure E]

& Create a new application o

Wark with samples Cre
] : % CDpen an existing LCIF
o i unllne_ application and project Be
demanstrations
#* i
Import an existing |2EE # Cre
Read the * mport & g J2E
e application from the file ma
TR
Presd
s Check out existing &« Binl =l
1 T | 3
Help Cortent | 4 | L»]
| Editing

ORACLE

D-2 Copyright © 2009, Oracle. All rights reserved.

Connection Navigator

@ﬂtnnnectinnﬂ Mawig... E
X @Y

i Connections

ORACLE

D-3 Copyright © 2009, Oracle. All rights reserved.

Application Navigator

Applicatiu:uns Mavigator |
FRE®RE O

Applications

ORACLE

D-4 Copyright © 2009, Oracle. All rights reserved.

Structure Window

"= EMPLOYEES - Structure |
4

I:l Columns

=7 Constraints

A3 EMP_LAST_MAME_MN
- 58 EMP_DEPT_FK
- E= EMP_EMP_ID_PE,
f-E= EMP_EMAIL_UK,
3 EMP_HIRE_DATE_NN
- B8 EMP_JOE_FE.

A3 EMP_saLARY_MIN
i B8 EMP_MARAGER_FK
A3 EMP_JOB_NN
G EMP_EMAIL_NN
I:l Indexes

ORACLE

D-5 Copyright © 2009, Oracle. All rights reserved.

Editor Window

5= ADD JOR_RISTORY il

PROCEDURE add_job_history [
i p_emp_id Jjoh_history.emnplovee_id¥type B
, p_start_date joh_history.start_dateitvpe
. P_end_date job_history.end_dateXtype
, P_Jjoh_id joh_history. job_idEtype
, p_department_id Jjob_history.department_id¥type
)

IS

BEGIN

IMSERT INTO job_history (emplowee_id, start_date, end_date,
joh_id, department_id)
VALUES Cp_emp_id, p_start_date, p_end_date,
h_qjob_id, p_department_id):
END add_joh_history;

Source | A e "]

ORACLE

D-6 Copyright © 2009, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following
steps:

1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

e

©

ORACLE

Y

\

i
LR TR
“ B
11‘_

oY

AL

D-7 Copyright © 2009, Oracle. All rights reserved.

Creating Program Units

EADD_JDE_HJETDRF \FEITESTIDEY A hd
|

FUNCTION “TEST_JDEW"
RETURN VYARCHARZ2
A%
BEGIN
RETURN(''3;
END;

Lource | A]

Skeleton of the function

ORACLE

D-8 Copyright © 2009, Oracle. All rights reserved.

Compiling

Cu:umpiler— Log |
E Project: fhomejoracle fidevhomejfsystem foracle jdeveloper. 10.1.3.42 70 /Defaultworkspace fProjectl jpr
== PROCEDURETEACH_C.ADD_JOB_HISTORY.pls

----- @ Error{li, 3y PLSSOL: SQL Statement ignored

b @ Error{ls, 35 PLASOL ORA-O00917Y: mizzing camma

L conprer OpS

Compilation with errors

Messages - Log |

Compiling...
[12:37:35 PM] SuccessTul compilation: O errors, O warnings.

Compilation without errors

ORACLE

D-9 Copyright © 2009, Oracle. All rights reserved.

Running a Program Unit

B X
Parametersz;
Parameter | Data Type | Mode

P_EMP_ID MUMEER. I
P_START_DATE DATE I
P_EMD_DATE DATE I
P_JOB_ID WARCHARZ(LON I
P_DEPARTMENT_ID MUMEER I

PLf5QL Block

DECLARE -
F_EMP_ID WUMEER,
F_START_DATE DATE;
F_EWD_DATE DATE;
F_JOB_ID WARCHARZ{1073;
F_DEPAETHENT_ID NMUMEER;

BEGIN
F_EMP_ID := NULL;
P_START_DATE := NULL;
P_EWD_DATE := MWULL; [
F_I0B_ID := NULL;
P_DEPARTHMENT_ID := MULL;

ADD_JOB_HISTORN L]
P EME Th —-~ B EMP Th | 7
4 |+

i
|T| | Ok *J l Cancel]

ORACLE

D-10 Copyright © 2009, Oracle. All rights reserved.

Dropping a Program Unit

] Drop Confirmation x

Areyou sure you want to drop PROCEDLRE
1 TEACH_C ADD_JOB_HISTORYY

ORACLE

D-11 Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

« JDeveloper support two types of debugging:
— Local
— Remote
* You need the following privileges to perform PL/SQL
debugging:
— DEBUG ANY PROCEDURE
— DEBUG CONNECT SESSION

ORACLE

D-12 Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

s Preferences ___________________________}

[#--Environment = Database Connections
"""" iEEF-"E"at':'rS Yalidate date and time default values
...... nt

v | Generate PLYSCQL Debug Information
[#}--Audit i - -
- Code Editar SOL™Plus Executable:
------ Code Style
------ Campare | | | s
...... C55 O indows, enter the path to the SQLPlus executable. ©On UMNEL you
Databace Connections alzo need to specify the xterm cammand. For example:
e usrfbingxterm -e foraclefhinfzqlplus

[#}--Debugger L . T
------ Deployment Registered JDEC Drivers:

[#--Diagrams -
------ Documentation [7] e |
------ Extensions
------ File Types
------ Clobal Ignare List
------ Http Analyzer
------ Java vizual Editor =

[+l 5P and HTML Yisual Edit o
------ Profiler B

G- Tasks Driver Class:

[#--Werzioning Lib

e ibrary:
------ Web Broweser and Proxy | - I o
q] o [[»] Claszpath:

| Help | | (0].4 ﬂ | Cancel l

ORACLE

D-13 Copyright © 2009, Oracle. All rights reserved.

Setting Breakpoints

= EMPLOYEE_SAL | A

PROCEDURE emplovee_sal(id NUMBER) IS E
emp emploveesHEROWTYPE; E
FUNCTION tax(salary VYARCHARZ) RETURN NUMEER I
EEGIN

RETURN salary ¥ 0,825;
END tax; i

BEGIN =
SELECT * INTO emp
FROM EMPLOYEES WHERE emplovee_id = 1id;

@ DEMS_0OUTPUT. PUT_LINEC "Tax: '||Tax(emp.salary’]; =

END;

Source | A]

ORACLE

D-15 Copyright © 2009, Oracle. All rights reserved.

Stepping Through Code

Debug

|

FoEG O- @ Y& XED S48 adn b- S-DE@WE

D connections | {Eapplicati.. | [2]|| S EMPLOYEE_SAL | (=]
R w ?” PROCEDURE emplowvee_sal(id NUMBER) IS (|
; : emp emploveeskERE0WNTYPE; B
D Fackages - FUNCTION tax({salary VARCHAR2) RETURMN NUMEER I%
EIE] Procedures BEGIN
- & ADD_DEFT RETURN salary * 0.825;
B ADD_JOB_HISTORY END tax; A
e E B ME_TRAMS EEGIN
...... E EMPLOYEE_SAL SELECT * INTO emp
______ ni FROM EMFLOYEES WHERE emplowee_id = 1d;
S GET_DEPARTMENTS| || o DEMS_OUTPUT. PUT_LINEC ' Tax: '||tax(emp.salary)d;)
-
...... HELLO END:
------ B LOG_USAGCE
B RAISE_SALARY
B READ_FILE
B SAL_STATUS |
- .2 SECURE DML = -
L i b Source | 4]

ORACLE

D-16 Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

e List the key features of Oracle SQL Developer
* |nstall Oracle SQL Developer

« ldentify menu items of Oracle SQL Developer
 Create a database connection

« Manage database objects

 Use SQL Worksheet

 Execute SQL statements and SQL scripts
 Create and save reports

ORACLE

E-2 Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

e Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

 You can connect to any target Oracle database schema by
using standard Oracle database authentication.

ORACLE

E-3 Copyright © 2009, Oracle. All rights reserved.

Key Features

 Was developed in Java

e Supports Windows, Linux, and Mac OS X platforms

e Uses the JDBC Thin driver for default connectivity
 Does not require an installer

 Connects to any Oracle Database version 9.2.0.1 and later
* |Is bundled with JRE 1.5

ORACLE

E-4 Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

® C:isqldeveloper

- File Edit View Favorites Tools Help .';.
: o »
: @ Back - (&g l% #}_.»' Search E?'l Folders
- Address |3 Chsgldeveloper w 30
P—
Folders X .
N =N sqldeveloper sgldeveloper
[EI ide E 1KE
-) idbe
E stracting rt.jar) idev
B idk i sgldeveloper . exe
| Cancel |) it 1

) lib _-;. | upgrade_guidelines.txt
1 rdbms b |ﬁ_ Tewxt Document v
Pl
—

¢ | y | »

ORACLE

E-5 Copyright © 2009, Oracle. All rights reserved.

Menus for SQL Developer

Oracle SQL Developer - 0O X

File Edit View Navigate Run Source VYersioning Migration Iulnls Help

Ef=t = - |12

B2 | »

= @7 4
i

_onnections Editing

ORACLE

E-6 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

e You must have at least one database connection to use
SQL Developer.

e You can create and test connections:
— For multiple databases
— For multiple schemas

 SQL Developer automatically imports any connections
defined in the tnsnames. ora file on your system.

* You can export connections to an XML file.

« Each additional database connection created is listed in
the connections navigator hierarchy.

ORACLE

E-7 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

a Connections |

=W T

------ a Conhnections

B new Cannection Cannecti.. Cannecti.. | Connection Mame |r'r1':.-'|:|:|r'|r‘|E|:ti|:|r'| |
Import Cannections Username ||:ura1 |
Pazzword |“"""‘"r |

Save Password

Oracle

Role default [] of Authentication
D> Connection T¥Pe | pasic - [] Proxy Connection

Hozthame |In:n:a|hn:|st |
Port 11521 |
(®) sID |-:|rcl |

|

() Service name |

Status [Success

| Help l | Save ‘ | Clear | | Test | l Connect k‘ | Cancel |

ORACLE

E-8 Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
 Browse through many objects in a database schema
Do a quick review of the definitions of objects

File Edit Yiew Navigate Run Source VYersioning Migration Tools Help
RoBd 96 XER O 0 5- o]
,_{1 |:__'| a [;] [myconnection FEEmPLOYEES E] y
@ EE:} Y Columns | Data| Constraints | Grants | Statistics | Triggers 'IJ g
£ = m
=&y Connections Al A 2 8 Actions.. ; §
E‘a myconnection Column Mame | Drata Type |E} Mullable |Data De |
m
E-{3 Tables EMPLOYEE_ID MUMBER(S, 0 No frull) &
K548 COUNTRIES FIRST_MAME VARCHARZ(20 BYTE) ¥ I 5
w5 DEPARTMENTS - 5 2[Tes ey
I | e PLO Y EES LAST_MAME WARCHARZ(ZS BYTE) Mo fnull)
- JOB_CRADES EnnIL WARCHARZ(ZS BEYTEY Mo (rull rgl
- JoB_HISTORY PHOME_MUMEBER, WARCHARZ(Z0 BYTE) Yes fnully E
L =
E JOBS HIRE_DATE DATE Mo fnully o
E RIS IO JCB_ID WARCHARZ (L0 BYTE! Mo fnull
18 REGIONS
- Views S LA RY MUMBER(S, 23 Yes fnully
538 Indexes COMMISSION_PCT MUMBER{Z,2) Yes fnully
- Packages b GER_ID MUMBER(S, 03 Yes fnull)
[+ Procedures CERPARTMEMT_ID MUMBER{4,00 es fnull
- Functions vil [[
b > L_

ORACLE

E-9 Copyright © 2009, Oracle. All rights reserved.

Creating a Schema Object

 SQL Developer supports the
creation of any schema object by:

— Executing a SQL statement in SQL
Worksheet

— Using the context menu

 You can edit the objects by using an
edit dialog box or one of the many |&connections |

context-sensitive menus. Ef;ﬁj |
* You can view the DDL for E-Q nypagion
adjustments such as creating a new ???4 B NewTable
object or editing an existing schema ;;;j%,ﬂ e
object. o
l Import Data
1 -ﬂelp

ORACLE

E-10 Copyright © 2009, Oracle. All rights reserved.

Creating a New Table: Example

[Create Table X
schema: | ORAL - | [v] Advanced E
MName: DEPARTMENTS |
Table Type: () Mormal () External () Index Organized () Temporary (Transaction) () Temporary (Session)

(@l “J'. Columns: Column Properties
F
—m DEPARTMENT_ID | EP | Mame | COLLIMML |
, DEPARTMENT_MAME el
""" Primary Key LOCATION_ID %
Fam q o
...... Ui s traint = | | Datatype: (2 Simple () Complex
nlq_ue anstraints MAMAGERID ol i
------ Foreign Keys COLUMMNL ? Type: |‘MRCHAR2 "J
------ Check Constraints |_|
...... |ndexe5 & S|EE |2D |
------ Column Sequences Units: | v|
------ Table Properties B .
------ Lob Parameters
[=F- Partitioning
------ Partition Definitions
- Subpartition Templates Sl |
...... C O m et [] Cannot be MULL
------ DOL

Comment:

| Help | l oK i | Cancel]

ORACLE
E-11 Copyright © 2009, Oracle. All rights reserved.

Using SQL Worksheet

 Use SQL Worksheet to enter and execute SQL, PL/SQL,
and SQL*Plus statements.

e Specify any actions that can be processed by the database
connection associated with the worksheet.

Help [myconnection | [+]
Databaze Copy EEERSG 98 ¢ | myconnection = |
Databaze Export Enter SOL Statement:
Databaze Diff |
Maonitor Seszions '

EQL Worksheet

External Toaols...

L CEE o [Results I__ﬂ SCript Qutput |'|j::-.‘_‘,:] Explain |?£:‘5]Autnt... |“{:j,| q‘i

Rezults:

ORACLE

E-12 Copyright © 2009, Oracle. All rights reserved.

Using SQL Worksheet

0.0]0,

[mi¥connecfion [*]
= & o 88 & myconnection v |
Ehter SQLStatemgnt:

1 @@ @

[Results| =] script Qutput |E] Explain |E]Autn:utrace |[E,DEMS Qutput | GO
Rezults:

ORACLE

E-13 Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

[myconnection (=]
E} EI E% a @ E ﬁ é 089192802 secondz myconnection ‘r]
Enter SOL Statement:

SELECT 1ast_nahe, salary FROM emplovees
WHERE =alarw = 10000;

SELECT Tast_name "Mame', salary™12 "Annual salary”
FROM emplowvees;

.
= Results _ﬂ Script Output |'-E'E.'3E:-:plain |§‘Eﬁﬁutntr’ace |5.3.DEMS Cutput ';;E‘l .
Rezults:
LesT_manE (B saLary

1 Hart=tein 13000

Z Higgins 12000

3 kKing 24000

4 kochhar 17000

5 De Haan 17000

& Zlotkey 10500

ORACLE

E-14 Copyright © 2009, Oracle. All rights reserved.

Viewing the Execution Plan

= myconnection | [+]
D‘ EI Q a 'ﬁ' E h # |mycnnnectinn v]
Enter 2L Statement:

SELECT emplowvee_id, last_name, job_id, salarw
FROM emplovees
WHERE salary > 10000;]

= Results |;| Script Cutput EExplaink B autatrace |@,DEMS Cutput | o

OPERATICON OBJECT_MAME
=40 SELECT STATEMENT
=3-[B TABLE ACCESS AFHeTlass
=38 Filter Predicates
L SALARY>10000

ORACLE

E-15 Copyright © 2009, Oracle. All rights reserved.

Formatting the SQL Code

[> myconnection | (=)
b EI @ a ﬁl | E h é 1.84321594 zeconds myconnection v|
Enter 5OL Statement:
select emplovee_id, department_id, Jjob_id, salary
eore lect 1 id, d id, job_id 1
] p | |Trom employees '-_'-hEHIEQ 53-! flr'l" [Execute statement F9
Format'“ ng and hire_date Tike ':39%; 'H Execute Explain Plan F@
ﬁ Autotrace Fi0
% Bun Script F&
=, Print File Ctrl-P
& Clear Ctrl-D
% J @ I
D Rezults !;l Script Cutput |E]EX|‘J|' &l SQL History Fi
Rezults:
3 cut Ctrl-¥ N
Capy Ctrl-oC
Pazte Ctrl-W
Select All Ctrl-A
Campile Ctrl+-5hift-F3
Query Builder
Refactaring ¢
Faormat E
Popup Deszcribe Shift-F4
Code Template Ctrl-5hift-T
Enter 5QL Statement:
SELECT enplovee_id, g
department_id .
After job_id ,
. — Sa-l Elr'}.f
Formattlng FROM employeas
WHERE salary > 10000

AND hire_date LIKE '#29';|

ORACLE

E-16 Copyright © 2009, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or
examples.

File Edit BYdUN Navigate BRun Source Versioning Migration Tools Help

= E iﬂﬂ Connections g E

Beports Bt

& | | @] Eiles (+]

E- E@ Y II' Eaptumddm;d;li ﬁ é 1.54321594 secnndglm':.-'cm

2B conn ol Converted Models
@ o @@ Find DE Object 7

E-TI Wersioning Mavigator ’

Log Ctrl+Shift-L ’
Debugger b
IEI Fun Manager 00

(&l soL History F3 e

s Extended Sea_rch

El Shippets Ot

v Statuz Bar
Toolbars b

Ejﬂ Befresh

ORACLE

E-17 Copyright © 2009, Oracle. All rights reserved.

EJExplain |?£_}Aumtrace |’3,| @

Using Snippets: Example

Eﬁ-m}tﬂmmﬂiﬂn E]
E} IEI @ a i-:il E ﬁ éf myconnection v|
Enter 5L Statement:
select] CONCAT(charl, char2) = snippets
- E
Inserting a .
. — Character Functions -
Snlppet CHRin)
COMCAT{Charl, charz)
INITCAPChar)
LOWER{Char)
Il.l'}ﬂ | N R | .- PR § |
e
E}m}tﬂfmeﬂiﬂn E]
D- EI @ ﬂ i:il E ﬁ éf my connection '|
o Enter 50L Statement:
Edltlng the Select COMCAT(Tirst_name,last_name) = snippets
- : From empl | -
nlovees @ %-
snippet %
Character Functions -
CHRA)
COMCATCharl, charz)
INITCAP{Char)
LOWWER{Char)
i

ORACLE

E-18 Copyright © 2009, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of
DBMS OUTPUT package statements.

Dv teark_d |

EREARAS 88 & 135308599 seconds teach_d |

Enter S0 Statement:
SET serveroutput ON|
DECLARE

w_Thame YARCHARZ (207;
EEGIN

SELECT first_name INTO w_thame FROM emplowvees WHERE emplowee_id=100;

(4

dbms_output. put_line{v_Thame];
END;

i W
[= Results %Script Qutput EﬂExplain |§'.'a._;]ﬂnut|:|tran:e |[3.DEMS Qutput _-;‘I Dis Cutput

¢ 88 |

anonvmous hlock completed
Steven

ORACLE

E-19 Copyright © 2009, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units:

[teach @ |1] ADD_JOB_HISTORY H] ADD_JOB HISTORY l =
- L]
| @8- 4> &k ~

create or replace
PROCEDURE add_job_history

r p_enp_id job_history.emplovee_idEtype
, p_start_date joh_history.start_dateXtype
. h_end_date job_histary.end_dateXtype
. p_Jjoh_id joh_history. job_iditype
. b_department_id job_history.department_id¥tyvpe
)
IS
BEGINM

INSERT job_history (emplowvee_id, start_date, end_date,

job_id, department_id)
n_emp_id, p_start_date, p_end_date, p_Jjob_id, p_department_id);
histary;

vall
END adaMTO

ORACLE

E-20 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Procedure

» Create PL/SQL Procedure >

(£}, Connections | Schema: [OFL-Ml 'l T
I% E& B4 Mame: |Emp_|ist | |§

@ Wi e [] Add MewSource In Lowercase

[+-{ 08 Indexes
@ Raclages r Parameters |/ DDOL |

E]EB Prcedures Mame Type Mode Default Walue + |
E’[ﬂ Befrezh ‘E|

? Apply Filter...

+

Compile Invalid @
Compile All

TErLEh

L gy g g oy ey L

: [@ Materialized Wiews Logs
-5 Synonyms

© e] (o] (e
@

ORACLE

E-21 Copyright © 2009, Oracle. All rights reserved.

R}

Using SQL*Plus

 SQL Worksheet does not support all SQL*Plus statements.
 SQL*Plus statements that are not supported by SQL

Worksheet are:

— append

— archive

— attribute

— break

— change

— clear

ORACLE

E-22 Copyright © 2009, Oracle. All rights reserved.

Database Reporting

 SQL Developer provides you with a number of predefined
reports about your database and objects.

 The Reports are organized into categories.
* You can create your own customized reports too.

Rtpurts |

(] &l Reports

L—‘_I@. Data Dictionary Reports
@, About Tour Databaze
{2 Al Objects

@, Application Exprezs
{2 A5H and AWR

- {Z Charts

@. Database Administration
@, Cata Dictionary

{2 Jobs

B (= PL/ Sl

@, SeCUrity

@. Streams

[+ -{Z Table

- XML

[H-{= Migration Reparts

[+ Uzer Defined Reports

ORACLE

E-23 Copyright © 2009, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

EH:I Reports ’ E}’ Ei |DEFCDnneu:tinn1 -
EH:I Data Dictionary Report
¥ Create Report Dialog -3 Ahout Your Datap) | EMEEDYEE D | FIRST NAME | LAST NAME
D Databaze Adminis 201 Michael Hartstein :
Name Lsmp_sal | D Takle 204 Hermarn Baer
--D PLISEL 205 Shelley Higgins
Description kmplnyees wyith salary==10000 | % Security 100 Steven King
. [L
ToolTip | | D Jobs 101 Meena Kochhar E
SELECT ewployee id, last name, ji* D Streams 102 Lex De Haan
FROM employees D All Ohjects 108 Mancy Greenbery
WHERE zalary >= 10000 - Data Dictionary 114 Den Raphaely
1435 John Russzel
Help | | o Lpply | | Cancel 146 Karen Parthers E
4 i KR e || »]

ORACLE

E-24 Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

 Browse, create, and edit database objects
 Execute SQL statements and scripts in SQL Worksheet
 Create and save custom reports

ORACLE

E-25 Copyright © 2009, Oracle. All rights reserved.

	Cover Page
	Introduction
	Lesson 01: Introduction to PL/SQL
	Lesson 02: Declaring PL/SQL Variables
	Lesson 03: Writing Executable Statements
	Lesson 04: Interacting with the Oracle Server
	Lesson 05: Writing Control Structures
	Lesson 06: Working with Composite Data Types
	Lesson 07: Using Explicit Cursors
	Lesson 08: Handling Exceptions
	Lesson 09: Creating Stored Procedures and Functions
	Appendix C: REF Cursors
	Appendix D: Oracle JDeveloper
	Appendix E: Using SQL Developer

