
A
Practice Solutions

 Oracle Database 10g: PL/SQL Fundamentals A - 2

Practice 1

The labs folder is the working directory where you can save your scripts. Ask your instructor
for help in locating the labs folder for this course. The solutions for all practices are in the
soln folder.

1. Which of the following PL/SQL blocks execute successfully?

a. BEGIN
END;

b. DECLARE
amount INTEGER(10);
END;

c. DECLARE
BEGIN
END;

d. DECLARE
amount INTEGER(10);
BEGIN
DBMS_OUTPUT.PUT_LINE(amount);
END;

The block in a does not execute because the executable section does not have any statements.
The block in b does not have the mandatory executable section that begins with the BEGIN
keyword.
The block in c has all the necessary parts but the executable section does not have any
statements.

2. Create a database connection in SQL Developer using the following information:

Connection Name: ora41
Username: ora41
Password: ora41
Hostname: localhost
Port: 1521
SID: orcl

 Oracle Database 10g: PL/SQL Fundamentals A - 3

1. Start SQL Developer from the icon on your desktop.

2. In the Connections tab, right-click Connections and select New Connection.

3. Enter the details, test the connection, and connect to the connection.

 Oracle Database 10g: PL/SQL Fundamentals A - 4

3. Create and execute a simple anonymous block that outputs “Hello World.” Execute and save
this script as lab_01_03_soln.sql.

a. Open the ora41 connection you created in task 2. A SQL Worksheet for that
connection opens.

b. Type the following code in the workspace.

SET SERVEROUTPUT ON
BEGIN
DBMS_OUTPUT.PUT_LINE(' Hello World ');
END;

c. Click the Run Script Icon.

d. You should see the following output:

e. Select File>Save to save the script. Select the folder in which you want to save the
file. Enter lab_01_03_soln.sql for the file name and click the Save button.

 Oracle Database 10g: PL/SQL Fundamentals A - 5

Practice 2

1. Identify valid and invalid identifiers:

a. today Valid
b. last_name Valid
c. today’s_date Invalid – character ‘’’ is not allowed
d. Number_of_days_in_February_this_year Invalid – Too long
e. Isleap$year Valid
f. #number Invalid – Cannot start with ‘#’
g. NUMBER# Valid
h. number1to7 Valid

2. Identify valid and invalid variable declaration and initialization:

a. number_of_copies PLS_INTEGER; Valid
b. PRINTER_NAME constant VARCHAR2(10); Invalid
c. deliver_to VARCHAR2(10):=Johnson; Invalid
d. by_when DATE:= SYSDATE+1; Valid

The declaration in b is invalid because constant variables must be initialized during
declaration.
The declaration in c is invalid because string literals should be enclosed within single
quotes.

3. Examine the following anonymous block and choose the appropriate statement.

SET SERVEROUTPUT ON
DECLARE
fname VARCHAR2(20);
lname VARCHAR2(15) DEFAULT 'fernandez';
BEGIN
DBMS_OUTPUT.PUT_LINE(FNAME ||' ' ||lname);
END;

a. The block executes successfully and prints “fernandez.”
b. The block produces an error because the fname variable is used without initializing.
c. The block executes successfully and prints “null fernandez.”
d. The block produces an error because you cannot use the DEFAULT keyword to

initialize a variable of type VARCHAR2.
e. The block produces an error because the fname variable is not declared.

a. The block will execute successfully and print “fernandez.”

4. Create an anonymous block. In SQL Developer, load the script lab_01_02_soln.sql,
which you created in exercise 2 of practice 1 by following these instructions:
 Select File>Open.
 Browse to select the lab_01_02_soln.sql file. Click the Open button. Your
 workspace will now have the code in the .sql file.

 Oracle Database 10g: PL/SQL Fundamentals A - 6

a. Add declarative section to this PL/SQL block. In the declarative section, declare the
following variables:
1. Variable today of type DATE. Initialize today with SYSDATE.

DECLARE
today DATE:=SYSDATE;

2. Variable tomorrow of type today. Use %TYPE attribute to declare this
variable.

tomorrow today%TYPE;

b. In the executable section initialize the variable tomorrow with an expression, which
calculates tomorrow’s date (add one to the value in today). Print the value of
today and tomorrow after printing “Hello World.”

BEGIN
tomorrow:=today +1;
DBMS_OUTPUT.PUT_LINE(' Hello World ');
DBMS_OUTPUT.PUT_LINE('TODAY IS : '|| today);
DBMS_OUTPUT.PUT_LINE('TOMORROW IS : ' || tomorrow);
END;

c. Execute and save your script as lab_02_04_soln.sql. Follow the instructions in

step 2 e) of practice 1 to save the file. Sample output is as follows:

 Oracle Database 10g: PL/SQL Fundamentals A - 7

5. Edit the lab_02_04_soln.sql script.

a. Add code to create two bind variables.
Create bind variables basic_percent and pf_percent of type NUMBER.

VARIABLE basic_percent NUMBER
VARIABLE pf_percent NUMBER

b. In the executable section of the PL/SQL block assign the values 45 and 12 to
basic_percent and pf_percent, respectively.

:basic_percent:=45;
:pf_percent:=12;

c. Terminate the PL/SQL block with “/” and display the value of the bind variables by
using the PRINT command.

/
PRINT basic_percent
PRINT pf_percent

OR

PRINT

d. Execute and save your script as lab_02_05_soln.sql. Sample output is as
follows:

 Oracle Database 10g: PL/SQL Fundamentals A - 8

Practice 3

DECLARE
 weight NUMBER(3) := 600;
 message VARCHAR2(255) := 'Product 10012';
BEGIN
 DECLARE
 weight NUMBER(3) := 1;
 message VARCHAR2(255) := 'Product 11001';
 new_locn VARCHAR2(50) := 'Europe';
 BEGIN
 weight := weight + 1;
 new_locn := 'Western ' || new_locn;

 END;
 weight := weight + 1;
 message := message || ' is in stock';
 new_locn := 'Western ' || new_locn;

END;

1. Evaluate the preceding PL/SQL block and determine the data type and value of each of the
following variables according to the rules of scoping.

a. The value of weight at position 1 is:
2
The data type is NUMBER.

b. The value of new_locn at position 1 is:

Western Europe
The data type is VARCHAR2.

c. The value of weight at position 2 is:

601
The data type is NUMBER.

d. The value of message at position 2 is:

Product 10012 is in stock.
The data type is VARCHAR2.

e. The value of new_locn at position 2 is:

Illegal because new_locn is not visible outside the subblock.

1

2

 Oracle Database 10g: PL/SQL Fundamentals A - 9

DECLARE
 customer VARCHAR2(50) := 'Womansport';
 credit_rating VARCHAR2(50) := 'EXCELLENT';
BEGIN
 DECLARE
 customer NUMBER(7) := 201;
 name VARCHAR2(25) := 'Unisports';
 BEGIN
 credit_rating :=‘GOOD’;
 …
 END;
 …
END;

2. In the preceding PL/SQL block, determine the values and data types for each of the following

cases.

a. The value of customer in the nested block is:
201
The data type is NUMBER.F

b. The value of name in the nested block is:
Unisports
The data type is VARCHAR2.

c. The value of credit_rating in the nested block is:
GOOD
The data type is VARCHAR2.

d. The value of customer in the main block is:
Womansport
The data type is VARCHAR2.

e. The value of name in the main block is:
name is not visible in the main block and you would see an error.

f. The value of credit_rating in the main block is:
GOOD
The data type is VARCHAR2.

3. Edit lab_02_05_soln.sql in the same worksheet where you executed it. If you have
closed that worksheet, open and execute lab_02_05_soln.sql, and then edit it.

a. Use single line comment syntax to comment the lines that create the bind variables.

-- VARIABLE basic_percent NUMBER
-- VARIABLE pf_percent NUMBER

b. Use multiple line comments in the executable section to comment the lines that assign

values to the bind variables.

/* :basic_percent:=45;
:pf_percent:=12; */

 Oracle Database 10g: PL/SQL Fundamentals A - 10

c. Declare two variables: fname of type VARCHAR2 and size 15, and emp_sal of

type NUMBER and size 10.

fname VARCHAR2(15);
emp_sal NUMBER(10);

d. Include the following SQL statement in the executable section:

SELECT first_name, salary INTO fname, emp_sal
FROM employees WHERE employee_id=110;

e. Change the line that prints “Hello World” to print “Hello” and the first name. You

can comment the lines that display the dates and print the bind variables, if you want
to.

DBMS_OUTPUT.PUT_LINE(' Hello '|| fname);

f. Calculate the contribution of the employee towards provident fund (PF).

PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use the bind
variables for the calculation. Try to use only one expression to calculate the PF. Print
the employee’s salary and his contribution toward PF.

DBMS_OUTPUT.PUT_LINE('YOUR SALARY IS : '||emp_sal);
DBMS_OUTPUT.PUT_LINE('YOUR CONTRIBUTION TOWARDS PF:
'||emp_sal*:basic_percent/100*:pf_percent/100);

g. Execute and save your script as lab_03_03_soln.sql. Sample output is as

follows:

4. Execute the lab_03_04.sql script. This script creates a table called
employee_details.

a. The employee and employee_details tables have the same data. You will
update the data in the employee_details table. Do not update or change the data
in the employees table.

b. Open the lab_03_04b.sql script and observe the code in the file. Note that the
code accepts the employee number and the department number from the user.

 Oracle Database 10g: PL/SQL Fundamentals A - 11

SET SERVEROUTPUT ON
SET VERIFY OFF
ACCEPT emp_id PROMPT 'Please enter your employee number';
ACCEPT emp_deptid PROMPT 'Please enter the department number for which
salary revision is being done';

DECLARE
 emp_authorization NUMBER(5);
 emp_id NUMBER(5):=&emp_id;
 emp_deptid NUMBER(6):=&emp_deptid;
 no_such_employee EXCEPTION;
...

c. You use this as the skeleton script to develop the application, which was discussed in

the lesson titled “Introduction.”

 Oracle Database 10g: PL/SQL Fundamentals A - 12

Practice 4

1. Create a PL/SQL block that selects the maximum department ID in the departments table
and stores it in the max_deptno variable. Display the maximum department ID.

a. Declare a variable max_deptno of type NUMBER in the declarative section.

SET SERVEROUTPUT ON
DECLARE
 max_deptno NUMBER;

b. Start the executable section with the keyword BEGIN and include a SELECT
statement to retrieve the maximum department_id from the departments
table.

BEGIN
 SELECT MAX(department_id) INTO max_deptno FROM departments;

c. Display max_deptno and end the executable block.

DBMS_OUTPUT.PUT_LINE('The maximum department_id is : ' || max_deptno);
END;

d. Execute and save your script as lab_04_01_soln.sql. Sample output is as

follows:

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
departments table.

a. Open the lab_04_01_soln.sql script. Declare two variables:
dept_name of type departments.department_name.
dept_id of type NUMBER.
Assign “Education” to dept_name in the declarative section.

VARIABLE dept_id NUMBER
…
dept_name departments.department_name%TYPE:= 'Education';

b. You have already retrieved the current maximum department number from the

departments table. Add 10 to it and assign the result to dept_id.

dept_id := 10 + max_deptno;
…

 Oracle Database 10g: PL/SQL Fundamentals A - 13

c. Include an INSERT statement to insert data into the department_name,

department_id, and location_id columns of the departments table.
Use values in dept_name, dept_id for department_name,
department_id and use NULL for location_id.

…
INSERT INTO departments (department_id, department_name, location_id)
VALUES (:dept_id,dept_name, NULL);

d. Use the SQL%ROWCOUNT SQL attribute to display the number of rows that are

affected.

DBMS_OUTPUT.PUT_LINE (' SQL%ROWCOUNT gives ' || SQL%ROWCOUNT);
…

e. Execute a select statement to check if the new department is inserted. You can

terminate the PL/SQL block with “/” and include the SELECT statement in your
script.

…
/
SELECT * FROM departments WHERE department_id=:dept_id;

f. Execute and save your script as lab_04_02_soln.sql. Sample output is as

follows:

3. In exercise 2, you set location_id to null. Create a PL/SQL block that updates the
location_id to 3000 for the new department. Use the value of variable dept_id to
update the row.

a. Start the executable block with the keyword BEGIN. Include the UPDATE statement
to set the location_id to 3000 for the new department (dept id =280).

BEGIN
 UPDATE departments SET location_id=3000 WHERE
 department_id=280;

b. End the executable block with the keyword END. Terminate the PL/SQL block with
“/” and include a SELECT statement to display the department that you updated.

 Oracle Database 10g: PL/SQL Fundamentals A - 14

END;
/
SELECT * FROM departments WHERE department_id=:dept_id;

c. Include a DELETE statement to delete the department that you added.

DELETE FROM departments WHERE department_id=280;

d. Execute and save your script as lab_04_03_soln.sql. Sample output is as

follows:

4. Open the lab_03_05b.sql script.

a. Observe that the code has nested blocks. You will see the declarative section of the
outer block. Look for the comment “INCLUDE EXECUTABLE SECTION OF
OUTER BLOCK HERE” and start an executable section.

BEGIN

b. Include a single SELECT statement, which retrieves the employee_id of the

employee working in the “Human Resources” department. Use the INTO clause to
store the retrieved value in the emp_authorization variable.

SELECT employee_id into emp_authorization FROM
 employee_details WHERE department_id=(SELECT department_id
 FROM departments WHERE department_name='Human Resources');

c. Save your script as lab_04_04_soln.sql.

 Oracle Database 10g: PL/SQL Fundamentals A - 15

Practice 5

1. Execute the command in the lab_05_01.sql file to create the messages table. Write a
PL/SQL block to insert numbers into the messages table.

a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.

BEGIN
FOR i in 1..10 LOOP
 IF i = 6 or i = 8 THEN
 null;
 ELSE
 INSERT INTO messages(results)
 VALUES (i);
 END IF;
END LOOP;
COMMIT;
END;
/

c. Execute a SELECT statement to verify that your PL/SQL block worked.

SELECT * FROM messages;

You should see the following output:

2. Execute the lab_05_02.sql script. This script creates an emp table that is a replica of the
employees table. It alters the emp table to add a new column, stars, of VARCHAR2 data
type and size 50. Create a PL/SQL block that inserts an asterisk in the stars column for every
$1000 of the employee’s salary. Save your script as lab_05_02_soln.sql.

a. Use the DEFINE command to define a variable called empno and initialize it to 176.

SET VERIFY OFF
DEFINE empno = 176

 Oracle Database 10g: PL/SQL Fundamentals A - 16

b. Start the declarative section of the block and pass the value of empno to the PL/SQL
block through a substitution variable. Declare a variable asterisk of type
emp.stars and initialize it to NULL. Create a variable sal of type emp.salary.

DECLARE
 empno emp.employee_id%TYPE := TO_NUMBER(&empno);
 asterisk emp.stars%TYPE := NULL;
 sal emp.salary%TYPE;

c. In the executable section, write logic to append an asterisk (*) to the string for every

$1000 of the salary. For example, if the employee earns $8000, the string of asterisks
should contain eight asterisks. If the employee earns $12500, the string of asterisks
should contain 13 asterisks.

BEGIN
 SELECT NVL(ROUND(salary/1000), 0) INTO sal
 FROM emp WHERE employee_id = empno;

 FOR i IN 1..sal
 LOOP
 asterisk := asterisk ||'*';
 END LOOP;

d. Update the stars column for the employee with the string of asterisks. Commit

before the end of the block.

UPDATE emp SET stars = asterisk
 WHERE employee_id = empno;
 COMMIT;
END;

e. Display the row from the emp table to verify whether your PL/SQL block has

executed successfully.

SELECT employee_id,salary, stars
FROM emp WHERE employee_id=&empno;

f. Execute and save your script as lab_05_02_soln.sql. The output is as follows:

 Oracle Database 10g: PL/SQL Fundamentals A - 17

3. Open the script lab_04_04_soln.sql, which you created in exercise 4 of Practice 4.

a. Look for the comment “INCLUDE SIMPLE IF STATEMENT HERE” and include a
simple IF statement to check if the values of emp_id and emp_authorization
are the same.

IF (emp_id=emp_authorization) THEN

b. Save your script as lab_05_03_soln.sql.

 Oracle Database 10g: PL/SQL Fundamentals A - 18

Practice 6

1. Write a PL/SQL block to print information about a given country.

a. Declare a PL/SQL record based on the structure of the countries table.
b. Use the DEFINE command to define a variable countryid. Assign CA to

countryid. Pass the value to the PL/SQL block through a substitution variable.

SET SERVEROUTPUT ON
SET VERIFY OFF
DEFINE countryid = CA

c. In the declarative section, use the %ROWTYPE attribute and declare the variable

country_record of type countries.

DECLARE
 country_record countries%ROWTYPE;

d. In the executable section, get all the information from the countries table by

using countryid. Display selected information about the country. Sample output is
as follows:

BEGIN
 SELECT *
 INTO country_record
 FROM countries
 WHERE country_id = UPPER('&countryid');

 DBMS_OUTPUT.PUT_LINE ('Country Id: ' || country_record.country_id ||
 ' Country Name: ' || country_record.country_name
 || ' Region: ' || country_record.region_id);

END;

e. You may want to execute and test the PL/SQL block for the countries with the IDs

DE, UK, US.

 Oracle Database 10g: PL/SQL Fundamentals A - 19

2. Create a PL/SQL block to retrieve the name of some departments from the departments
table and print each department name on the screen, incorporating an INDEX BY table. Save
the script as lab_06_02_soln.sql.

a. Declare an INDEX BY table dept_table_type of type
departments.department_name. Declare a variable my_dept_table of
type dept_table_type to temporarily store the name of the departments.

SET SERVEROUTPUT ON
DECLARE
 TYPE dept_table_type is table of departments.department_name%TYPE
 INDEX BY PLS_INTEGER;
 my_dept_table dept_table_type;

b. Declare two variables: loop_count and deptno of type NUMBER. Assign 10 to

loop_count and 0 to deptno.

loop_count NUMBER (2):=10;
deptno NUMBER (4):=0;

c. Using a loop, retrieve the name of 10 departments and store the names in the INDEX

BY table. Start with department_id 10. Increase deptno by 10 for every
iteration of the loop. The following table shows the department_id for which you
should retrieve the department_name and store in the INDEX BY table.

DEPARTMENT_ID DEPARTMENT_NAME

10 Administration

20 Marketing

30 Purchasing

40 Human Resources

50 Shipping

60 IT

70 Public Relations

80 Sales

90 Executive

100 Finance

 Oracle Database 10g: PL/SQL Fundamentals A - 20

BEGIN

 FOR i IN 1..loop_count
 LOOP
 deptno:=deptno+10;
 SELECT department_name
 INTO my_dept_table(i)
 FROM departments
 WHERE department_id = deptno;
 END LOOP;

d. Using another loop, retrieve the department names from the INDEX BY table and

display them.

FOR i IN 1..loop_count
 LOOP
 DBMS_OUTPUT.PUT_LINE (my_dept_table(i));
 END LOOP;
END;

e. Execute and save your script as lab_06_02_soln.sql. The output is as follows:

3. Modify the block that you created in question 2 to retrieve all information about each
department from the departments table and display the information. Use an INDEX BY
table of records.

a. Open the lab_06_02_soln.sql script.
b. You have declared the INDEX BY table to be of type

departments.department_name. Modify the declaration of the INDEX BY
table, to temporarily store the number, name, manager_id, and location of all the
departments. Use the %ROWTYPE attribute.

 Oracle Database 10g: PL/SQL Fundamentals A - 21

SET SERVEROUTPUT ON
DECLARE
 TYPE dept_table_type is table of departments%ROWTYPE
 INDEX BY PLS_INTEGER;
 my_dept_table dept_table_type;
 loop_count NUMBER (2):=10;
 deptno NUMBER (4):=0;

c. Modify the select statement to retrieve all department information currently in the
departments table and store it in the INDEX BY table.

BEGIN
 FOR i IN 1..loop_count
 LOOP
 deptno := deptno + 10;
 SELECT *
 INTO my_dept_table(i)
 FROM departments
 WHERE department_id = deptno;
 END LOOP;

d. Using another loop, retrieve the department information from the INDEX BY table

and display the information. Sample output is as follows:

FOR i IN 1..loop_count
 LOOP
 DBMS_OUTPUT.PUT_LINE ('Department Number: ' ||
my_dept_table(i).department_id
 || ' Department Name: ' || my_dept_table(i).department_name
 || ' Manager Id: '|| my_dept_table(i).manager_id
 || ' Location Id: ' || my_dept_table(i).location_id);
 END LOOP;
END;

 Oracle Database 10g: PL/SQL Fundamentals A - 22

4. Load the lab_05_03_soln.sql script.

a. Look for the comment “DECLARE AN INDEX BY TABLE OF TYPE
VARCHAR2(50). CALL IT ename_table_type” and include the declaration.

TYPE ename_table_type IS TABLE OF
 VARCHAR2(50) INDEX BY PLS_INTEGER;

b. Look for the comment “DECLARE A VARIABLE ename_table OF TYPE

ename_table_type” and include the declaration.

ename_table ename_table_type;

c. Save your script as lab_06_04_soln.sql.

 Oracle Database 10g: PL/SQL Fundamentals A - 23

Practice 7

1. Create a PL/SQL block that determines the top n salaries of the employees.

a. Execute the lab_07_01.sql script to create a new table, top_salaries, for
storing the salaries of the employees.

b. Accept a number n from the user where n represents the number of top n earners from
the employees table. For example, to view the top five salaries, enter 5.
Note: Use the DEFINE command to define a variable p_num to provide the value for
n. Pass the value to the PL/SQL block through a substitution variable.

DELETE FROM top_salaries;
DEFINE p_num = 5

c. In the declarative section, declare two variables: num of type NUMBER to accept the

substitution variable p_num, sal of type employees.salary. Declare a cursor
emp_cursor that retrieves the salaries of employees in descending order.
Remember that the salaries should not be duplicated.

DECLARE
 num NUMBER(3) := &p_num;
 sal employees.salary%TYPE;
 CURSOR emp_cursor IS
 SELECT distinct salary
 FROM employees
 ORDER BY salary DESC;

d. In the executable section, open the loop and fetch top n salaries and insert them into

top_salaries table. You can use a simple loop to operate on the data. Also, try
and use %ROWCOUNT and %FOUND attributes for the exit condition.

BEGIN
 OPEN emp_cursor;
 FETCH emp_cursor INTO sal;
 WHILE emp_cursor%ROWCOUNT <= num AND emp_cursor%FOUND LOOP
 INSERT INTO top_salaries (salary)
 VALUES (sal);
 FETCH emp_cursor INTO sal;
 END LOOP;
 CLOSE emp_cursor;
END;

 Oracle Database 10g: PL/SQL Fundamentals A - 24

e. After inserting into the top_salaries table, display the rows with a SELECT
statement. The output shown represents the five highest salaries in the employees
table.

/
SELECT * FROM top_salaries;

f. Test a variety of special cases, such as n = 0 or where n is greater than the number of
employees in the employees table. Empty the top_salaries table after/before
each test.

2. Create a PL/SQL block that does the following:

a. Use the DEFINE command to define a variable p_deptno to provide the department
ID.

SET SERVEROUTPUT ON
SET VERIFY OFF
SET ECHO OFF
DEFINE p_deptno = 10

b. In the declarative section, declare a variable deptno of type NUMBER and assign the

value of p_deptno.

DECLARE
deptno NUMBER := &p_deptno;

c. Declare a cursor emp_cursor that retrieves the last_name, salary, and

manager_id of the employees working in the department specified in deptno.

CURSOR emp_cursor IS
 SELECT last_name, salary,manager_id
 FROM employees
 WHERE department_id = deptno;

 Oracle Database 10g: PL/SQL Fundamentals A - 25

d. In the executable section, use the cursor FOR loop to operate on the data retrieved. If
the salary of the employee is less than 5000 and if the manager ID is either 101 or
124, display the message <<last_name>> Due for a raise. Otherwise, display the
message <<last_name>> Not due for a raise.

BEGIN
 FOR emp_record IN emp_cursor
 LOOP
 IF emp_record.salary < 5000 AND (emp_record.manager_id=101 OR
emp_record.manager_id=124) THEN
 DBMS_OUTPUT.PUT_LINE (emp_record.last_name || ' Due for a raise');
 ELSE
 DBMS_OUTPUT.PUT_LINE (emp_record.last_name || ' Not Due for a
raise');
 END IF;
 END LOOP;
END;

e. Test the PL/SQL block for the following cases:

3. Write a PL/SQL block, which declares and uses cursors with parameters.
In a loop, use a cursor to retrieve the department number and the department name from the
departments table for a department whose department_id is less than 100. Pass the
department number to another cursor as a parameter to retrieve from the employees table
the details of employee last name, job, hire date, and salary of those employees whose
employee_id is less than 120 and who work in that department.

Department ID Message

10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise
Fripp Not Due for a raise
Kaufling Not Due for a raise
Vollman Not Due for a raise
Mourgas Not Due for a raise
. . .
. . .
Rajs Due for a raise

80 Russel Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise
. . .
. . .

 Oracle Database 10g: PL/SQL Fundamentals A - 26

a. In the declarative section, declare a cursor dept_cursor to retrieve
department_id, department_name for those departments with
department_id less than 100. Order by department_id.

SET SERVEROUTPUT ON
DECLARE
 CURSOR dept_cursor IS
 SELECT department_id,department_name
 FROM departments
 WHERE department_id < 100
 ORDER BY department_id;

b. Declare another cursor emp_cursor that takes the department number as parameter

and retrieves last_name, job_id, hire_date, and salary of those
employees with employee_id of less than 120 and who work in that department.

CURSOR emp_cursor(v_deptno NUMBER) IS
 SELECT last_name,job_id,hire_date,salary
 FROM employees
 WHERE department_id = v_deptno
 AND employee_id < 120;

c. Declare variables to hold the values retrieved from each cursor. Use the %TYPE

attribute while declaring variables.

current_deptno departments.department_id%TYPE;
current_dname departments.department_name%TYPE;
ename employees.last_name%TYPE;
job employees.job_id%TYPE;
hiredate employees.hire_date%TYPE;
sal employees.salary%TYPE;

d. Open dept_cursor, use a simple loop, and fetch values into the variables

declared. Display the department number and department name.

BEGIN
OPEN dept_cursor;
 LOOP
 FETCH dept_cursor INTO current_deptno,current_dname;
 EXIT WHEN dept_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE ('Department Number : ' ||
current_deptno || ' Department Name : ' || current_dname);

e. For each department, open emp_cursor by passing the current department number

as a parameter. Start another loop and fetch the values of emp_cursor into
variables and print all the details retrieved from the employees table.
Note: You may want to print a line after you have displayed the details of each
department. Use appropriate attributes for the exit condition. Also check if a cursor is
already open before opening the cursor.

 Oracle Database 10g: PL/SQL Fundamentals A - 27

IF emp_cursor%ISOPEN THEN
 CLOSE emp_cursor;
END IF;
 OPEN emp_cursor (current_deptno);
 LOOP
 FETCH emp_cursor INTO ename,job,hiredate,sal;
 EXIT WHEN emp_cursor%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE (ename || ' ' || job || ' ' || hiredate
|| ' ' || sal);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('--
--------------------------------------');
 CLOSE emp_cursor;

f. Close all the loops and cursors, and end the executable section. Execute the script.

END LOOP;
 CLOSE dept_cursor;
END;

 Oracle Database 10g: PL/SQL Fundamentals A - 28

4. Load the lab_06_04_soln.sql script.

a. Look for the comment “DECLARE A CURSOR CALLED emp_records TO HOLD
salary, first_name, and last_name of employees” and include the declaration. Create
the cursor such that it retrieves the salary, first_name, and last_name of
employees in the department specified by the user (substitution variable
emp_deptid). Use the FOR UPDATE clause.

 CURSOR emp_records IS SELECT salary,first_name,last_name
 FROM employee_details WHERE department_id=emp_deptid
 FOR UPDATE;

b. Look for the comment “INCLUDE EXECUTABLE SECTION OF INNER BLOCK

HERE” and start the executable block.

 BEGIN

c. Only employees working in the departments with department_id 20, 60, 80,100,

and 110 are eligible for raises this quarter. Check if the user has entered any of these
department IDs. If the value does not match, display the message “SORRY, NO
SALARY REVISIONS FOR EMPLOYEES IN THIS DEPARTMENT.” If the value
matches, open the cursor emp_records.

 IF (emp_deptid NOT IN (20,60,80,100,110)) THEN
 DBMS_OUTPUT.PUT_LINE ('SORRY, NO SALARY REVISIONS FOR
 EMPLOYEES IN THIS DEPARTMENT');
 ELSE
 OPEN emp_records;

d. Start a simple loop and fetch the values into emp_sal, emp_fname, and

emp_lname. Use %NOTFOUND for the exit condition.

 LOOP
 FETCH emp_records INTO emp_sal,emp_fname,emp_lname;
 EXIT WHEN emp_records%NOTFOUND;

e. Include a CASE expression. Use the following table as reference for the conditions in

the WHEN clause of the CASE expression.

Note: In your CASE expression, use the constants such as c_range1, c_hike1
that are already declared.

3 >12000

8 > 9500 <12000

15 > 6500 < 9500

20 < 6500

Hike percentage salary

 Oracle Database 10g: PL/SQL Fundamentals A - 29

For example, if the salary of the employee is less than 6500, increase the salary by 20
percent. In every WHEN clause, concatenate the first_name and last_name of the
employee and store it in the INDEX BY table. Increment the value in variable i so that
you can store the string in the next location. Include an UPDATE statement with the
WHERE CURRENT OF clause.

 CASE
 WHEN emp_sal<c_range1 THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal + (emp_sal*c_hike1)
 WHERE CURRENT OF emp_records;
 WHEN emp_sal<c_range2 THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike2)
 WHERE CURRENT OF emp_records;
 WHEN (emp_sal<c_range3) THEN
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike3)
 WHERE CURRENT OF emp_records;
 ELSE
 ename_table(i):=emp_fname||' '||emp_lname;
 i:=i+1;
 UPDATE employee_details SET salary=emp_sal+(emp_sal*c_hike4)
 WHERE CURRENT OF emp_records;
 END CASE;

f. Close the loop. Use the %ROWCOUNT attribute and print the number of records that

were modified. Close the cursor.

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('NUMBER OF RECORDS MODIFIED :
 '||emp_records%ROWCOUNT);
 CLOSE emp_records;

g. Include a simple loop to print the names of all the employees whose salaries were

revised.
Note: You already have the names of these employees in the INDEX BY table.
Look for the comment “CLOSE THE INNER BLOCK” and include an END IF
statement and an END statement.

 Oracle Database 10g: PL/SQL Fundamentals A - 30

DBMS_OUTPUT.PUT_LINE ('The following employees'' salaries are updated');
 FOR i IN ename_table.FIRST..ename_table.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE(ename_table(i));
 END LOOP;
END IF;
END;

h. Save your script as lab_07_04_soln.sql.

 Oracle Database 10g: PL/SQL Fundamentals A - 31

Practice 8

1. The purpose of this example is to show the usage of predefined exceptions. Write a PL/SQL
block to select the name of the employee with a given salary value.

a. Delete all the records in the messages table. Use the DEFINE command to define a
variable sal and initialize it to 6000.

DELETE FROM MESSAGES;
SET VERIFY OFF
DEFINE sal = 6000

b. In the declarative section, declare two variables: ename of type
employees.last_name and emp_sal of type employees.salary. Pass
the value of the substitution variables to emp_sal.

DECLARE
 ename employees.last_name%TYPE;
 emp_sal employees.salary%TYPE := &sal;

c. In the executable section, retrieve the last names of employees whose salaries are
equal to the value in emp_sal.
Note: Do not use explicit cursors.
If the salary entered returns only one row, insert into the messages table the
employee’s name and the salary amount.

BEGIN
 SELECT last_name
 INTO ename
 FROM employees
 WHERE salary = emp_sal;
 INSERT INTO messages (results)
 VALUES (ename || ' - ' || emp_sal);

d. If the salary entered does not return any rows, handle the exception with an

appropriate exception handler and insert into the messages table the message “No
employee with a salary of <salary>.”

EXCEPTION
 WHEN no_data_found THEN
 INSERT INTO messages (results)
 VALUES ('No employee with a salary of '|| TO_CHAR(emp_sal));

e. If the salary entered returns more than one row, handle the exception with an
appropriate exception handler and insert into the messages table the message
“More than one employee with a salary of <salary>.”

WHEN too_many_rows THEN
 INSERT INTO messages (results)

 Oracle Database 10g: PL/SQL Fundamentals A - 32

 VALUES ('More than one employee with a salary of '||
 TO_CHAR(emp_sal));

f. Handle any other exception with an appropriate exception handler and insert into the
messages table the message “Some other error occurred.”

WHEN others THEN
 INSERT INTO messages (results)
 VALUES ('Some other error occurred.');
END;

g. Display the rows from the messages table to check whether the PL/SQL block has

executed successfully. Sample output is as follows:

/
SELECT * FROM messages;

2. The purpose of this example is to show how to declare exceptions with a standard Oracle
Server error. Use the Oracle server error ORA-02292 (integrity constraint violated – child
record found).

a. In the declarative section, declare an exception childrecord_exists. Associate
the declared exception with the standard Oracle server error –02292.

SET SERVEROUTPUT ON
DECLARE
 childrecord_exists EXCEPTION;
 PRAGMA EXCEPTION_INIT(childrecord_exists, -02292);

b. In the executable section, display “Deleting department 40.....”. Include a DELETE

statement to delete the department with department_id 40.

BEGIN
 DBMS_OUTPUT.PUT_LINE(' Deleting department 40........');
 delete from departments where department_id=40;

c. Include an exception section to handle the childrecord_exists exception and

display the appropriate message. Sample output is as follows:

EXCEPTION
 WHEN childrecord_exists THEN
 DBMS_OUTPUT.PUT_LINE(' Cannot delete this department. There are
employees in this department (child records exist.)');
END;

 Oracle Database 10g: PL/SQL Fundamentals A - 33

3. Load the lab_07_04_soln.sql script.

a. Observe the declarative section of the outer block. Note that the
no_such_employee exception is declared.

b. Look for the comment “RAISE EXCEPTION HERE.” If the value of emp_id is not
between 100 and 206, then raise the no_such_employee exception.

 IF (emp_id NOT BETWEEN 100 AND 206) THEN
 RAISE no_such_employee;
 END IF;

c. Look for the comment “INCLUDE EXCEPTION SECTION FOR OUTER BLOCK”

and handle the exceptions no_such_employee and too_many_rows. Display
appropriate messages when the exceptions occur. The employees table has only
one employee working in the HR department and therefore the code is written
accordingly. The too_many_rows exception is handled to indicate that the select
statement retrieves more than one employee working in the HR department.

EXCEPTION
 WHEN no_such_employee THEN
 DBMS_OUTPUT.PUT_LINE ('NO EMPLOYEE EXISTS WITH THE
 GIVEN EMPLOYEE NUMBER: PLEASE CHECK');

 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE (' THERE IS MORE THAN ONE
 EMPLOYEE IN THE HR DEPARTMENT. ');

d. Close the outer block.

END;

e. Save your script as lab_08_03_soln.sql.
f. Execute the script. Enter the employee number and the department number and

observe the output. Enter different values and check for different conditions.
The sample output for employee ID 203 and department ID 100 is as follows:

 Oracle Database 10g: PL/SQL Fundamentals A - 34

Practice 9

1. In SQL Developer, open the lab_02_04_soln.sql script that you created for question 4
of practice 2.

a. Modify the script to convert the anonymous block to a procedure called greet.

CREATE PROCEDURE greet IS
 today DATE:=SYSDATE;
 tomorrow today%TYPE;
...

b. Execute the script to create the procedure.
c. Save this script as lab_09_01_soln.sql.
d. Click the Clear button to clear the workspace.
e. Create and execute an anonymous block to invoke the procedure greet. Sample

output is as follows:

BEGIN
 greet;
END;

2. Open the lab_09_01_soln.sql script.

a. Drop the procedure greet by issuing the following command:

DROP PROCEDURE greet

b. Modify the procedure to accept an argument of type VARCHAR2. Call the argument

name.

CREATE PROCEDURE greet(name VARCHAR2) IS
 today DATE:=SYSDATE;
 tomorrow today%TYPE;

c. Print Hello <name> instead of printing Hello World.

BEGIN
 tomorrow:=today +1;
 DBMS_OUTPUT.PUT_LINE(' Hello '|| name);

d. Save your script as lab_09_02_soln.sql.
e. Execute the script to create the procedure.

 Oracle Database 10g: PL/SQL Fundamentals A - 35

f. Create and execute an anonymous block to invoke the procedure greet with a
parameter. Sample output is as follows:

BEGIN
 greet('Neema');
END;

	Appendix A: Practice Solutions
	Practice 1
	Practice 2
	Practice 3
	Practice 4
	Practice 5
	Practice 6
	Practice 7
	Practice 8
	Practice 9

