
Oracle Database 10g: PL/SQL
Fundamentals

Electronic Presentation

D17112GC30
Edition 3.0
April 2009

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual
property laws. You may copy and print this document solely for your own use in an Oracle training
course. The document may not be modified or altered in any way. Except where your use constitutes
"fair use" under copyright law, you may not use, share, download, upload, copy, print, display,
perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part
without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any
problems in the document, please report them in writing to: Oracle University, 500 Oracle Parkway,
Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the
documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or disclose these
training materials are restricted by the terms of the applicable Oracle license agreement and/or the
applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

Authors
Salome Clement
Sunitha Patel
Tulika Srivastava

Technical Contributors
and Reviewers
Brian Boxx
Christoph Burandt
Zarko Cesljas
Dairy Chan
Isabelle Cornu
Kathryn Cunningham
Laszlo Czinkoczki
Burt Demchick
Laura Garza
Joel Goodman
Nancy Greenberg
Joe Greenwald
Jonathan Grove
Punita Handa
Jessie Ho
Craig Hollister
Alison Holloway
Chaitanya Koratamaddi
Bryn Llewellyn
Malika Marghadi
Hildegard Mayr
Miyuki Osato
Nagavalli Pataballa
Srinivas Putrevu
Bryan Roberts

Editors
Richard Wallis

Arijit Ghosh

Graphic Designers
Steve Elwood

Priya Saxena

Publishers
Sujatha Nagendra

Michael Sebastian

Nita Brozowski

Srividya Rameshkumar

Technical Contributors
and Reviewers
Helen Robertson
Grant Spencer
Michael Versaci
Lex Van Der Werff
Yash Jain

Copyright © 2009, Oracle. All rights reserved.

Introduction

Copyright © 2009, Oracle. All rights reserved.I - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Describe the objectives of the course
• Describe the course agenda
• Identify the database tables used in the course
• Identify the Oracle products that help you design a

complete business solution

Copyright © 2009, Oracle. All rights reserved.I - 3

Course Objectives

After completing this course, you should be able to do the
following:
• Describe how PL/SQL provides programming extensions

to SQL
• Write PL/SQL code to interface with the database
• Design PL/SQL program units that execute efficiently
• Use PL/SQL programming constructs and conditional

control statements
• Handle run-time errors
• Describe stored procedures and functions

Copyright © 2009, Oracle. All rights reserved.I - 4

Course Agenda

Lessons for the first day:
I. Introduction
1. Introduction to PL/SQL
2. Declaring PL/SQL Variables
3. Writing Executable Statements
4. Interacting with the Oracle Server
5. Writing Control Structures

Copyright © 2009, Oracle. All rights reserved.I - 5

Course Agenda

Lessons for the second day:
6. Working with Composite Data Types
7. Using Explicit Cursors
8. Handling Exceptions
9. Creating Stored Procedures and Functions

Copyright © 2009, Oracle. All rights reserved.I - 6

Human Resources (hr) Data Set

Copyright © 2009, Oracle. All rights reserved.I - 8

Oracle10g Grid Infrastructure

Copyright © 2009, Oracle. All rights reserved.I - 9

Oracle Database 10g

Multimedia

Object Relational Data

Messages

Documents

Copyright © 2009, Oracle. All rights reserved.I - 10

Oracle Application Server 10g

Business intelligence

Transactional applications

Portals

Integration

Application development
framework

Application
server

Copyright © 2009, Oracle. All rights reserved.I - 11

Oracle Enterprise Manager 10g
Grid Control

• Software provisioning
• Application service-level monitoring

Copyright © 2009, Oracle. All rights reserved.I - 12

Oracle Internet Platform
Sy

st
em

 m
an

ag
em

en
t

Network services

Databases Application
servers

Internet applications

Any
browser

Any
FTP client

Any
mail client

SQL

PL/SQL

Java

Clients

Presentation and
business logic

Business logic
and data

D
ev

el
op

m
en

t t
oo

ls

Copyright © 2009, Oracle. All rights reserved.I - 13

Summary

In this lesson, you should have learned how to:
• Describe the course objectives and course agenda
• Identify tables and their relationships in the hr schema
• Identify the various products in the Oracle 10g grid

infrastructure that enable you to develop a complete
business solution

Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL

Copyright © 2009, Oracle. All rights reserved.1 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Explain the need for PL/SQL
• Explain the benefits of PL/SQL
• Identify the different types of PL/SQL blocks
• Use Oracle SQL Developer as a development environment

for PL/SQL
• Output messages from PL/SQL

Copyright © 2009, Oracle. All rights reserved.1 - 3

What Is PL/SQL?

PL/SQL:
• Stands for Procedural Language extension to SQL
• Is Oracle Corporation’s standard data access language for

relational databases
• Seamlessly integrates procedural constructs with SQL

Copyright © 2009, Oracle. All rights reserved.1 - 4

About PL/SQL

PL/SQL:
• Provides a block structure for executable units of code.

Maintenance of code is made easier with such a well-
defined structure.

• Provides procedural constructs such as:
– Variables, constants, and types
– Control structures such as conditional statements and loops
– Reusable program units that are written once and executed

many times

Copyright © 2009, Oracle. All rights reserved.1 - 5

PL/SQL Environment

PL/SQL engine

Oracle Database Server

SQL Statement
Executor

Procedural
Statement
Executor

procedural

SQL

PL/SQL
Block

Copyright © 2009, Oracle. All rights reserved.1 - 6

Benefits of PL/SQL

• Integration of procedural constructs with SQL
• Improved performance

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

SQL 1

SQL 2
…

Copyright © 2009, Oracle. All rights reserved.1 - 7

Benefits of PL/SQL

• Modularized program development
• Integration with Oracle tools
• Portability
• Exception handling

Copyright © 2009, Oracle. All rights reserved.1 - 9

PL/SQL Block Structure

• DECLARE (optional)
– Variables, cursors, user-defined exceptions

• BEGIN (mandatory)
– SQL statements
– PL/SQL statements

• EXCEPTION (optional)
– Actions to perform

when errors occur
• END; (mandatory)

Copyright © 2009, Oracle. All rights reserved.1 - 11

Block Types

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

PROCEDURE name
IS

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN
--statements
RETURN value;

[EXCEPTION]

END;

Anonymous Procedure Function

Copyright © 2009, Oracle. All rights reserved.1 - 13

Program Constructs

Application triggers

Application packages

Application procedures
or functions

Anonymous blocks

Tools Constructs

Object types

Database triggers

Stored packages

Stored procedures or
functions

Anonymous blocks

Database Server
Constructs

Object types

Copyright © 2009, Oracle. All rights reserved.1 - 15

PL/SQL Programming Environments

Oracle JDeveloper

Copyright © 2009, Oracle. All rights reserved.1 - 16

PL/SQL Programming Environments

Oracle SQL Developer

Copyright © 2009, Oracle. All rights reserved.1 - 17

Creating a Database Connection

Copyright © 2009, Oracle. All rights reserved.1 - 18

Creating an Anonymous Block

Enter the anonymous block in the SQL Developer workspace:

Copyright © 2009, Oracle. All rights reserved.1 - 19

Executing an Anonymous Block

Click the Run Script button to execute the anonymous block:

Copyright © 2009, Oracle. All rights reserved.1 - 20

Testing the Output of a PL/SQL Block

• Enable output in SQL Developer by clicking the Enable
DBMS Output button on the DBMS Output tab:

• Use a predefined Oracle package and its procedure:
– DBMS_OUTPUT.PUT_LINE

Enable DBMS
Output

DBMS Output
Tab

Copyright © 2009, Oracle. All rights reserved.1 - 21

Testing the Output of a PL/SQL Block

Copyright © 2009, Oracle. All rights reserved.1 - 22

Summary

In this lesson, you should have learned how to:
• Integrate SQL statements with PL/SQL program constructs
• Identify the benefits of PL/SQL
• Differentiate different PL/SQL block types
• Use Oracle SQL Developer as the programming

environment for PL/SQL
• Output messages in PL/SQL

Copyright © 2009, Oracle. All rights reserved.1 - 23

Practice 1: Overview

This practice covers the following topics:
• Identifying which PL/SQL blocks execute successfully
• Creating and executing a simple PL/SQL block

Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

Copyright © 2009, Oracle. All rights reserved.2 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify valid and invalid identifiers
• List the uses of variables
• Declare and initialize variables
• List and describe various data types
• Identify the benefits of using the %TYPE attribute
• Declare, use, and print bind variables

Copyright © 2009, Oracle. All rights reserved.2 - 3

Use of Variables

Variables can be used for:
• Temporary storage of data
• Manipulation of stored values
• Reusability

SELECT
first_name,
department_id

INTO
emp_fname,
emp_deptno
FROM …

emp_fname

emp_deptno

Jennifer

10

Copyright © 2009, Oracle. All rights reserved.2 - 4

Identifiers

Identifiers are used for:
• Naming a variable
• Providing conventions for variable names

– Must start with a letter
– Can include letters or numbers
– Can include special characters (such as dollar sign,

underscore, and pound sign)
– Must limit the length to 30 characters
– Must not be reserved words

Copyright © 2009, Oracle. All rights reserved.2 - 5

Handling Variables in PL/SQL

Variables are:
• Declared and initialized in the declarative section
• Used and assigned new values in the executable section
• Passed as parameters to PL/SQL subprograms
• Used to hold the output of a PL/SQL subprogram

Copyright © 2009, Oracle. All rights reserved.2 - 6

Declaring and Initializing PL/SQL Variables

Syntax

Examples

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

DECLARE
emp_hiredate DATE;
emp_deptno NUMBER(2) NOT NULL := 10;
location VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER := 1400;

Copyright © 2009, Oracle. All rights reserved.2 - 7

Declaring and Initializing PL/SQL Variables

SET SERVEROUTPUT ON
DECLARE
Myname VARCHAR2(20);

BEGIN
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);
Myname := 'John';
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);

END;
/

SET SERVEROUTPUT ON
DECLARE
Myname VARCHAR2(20):= 'John';

BEGIN
Myname := 'Steven';
DBMS_OUTPUT.PUT_LINE('My name is: '||Myname);

END;
/

1

2

Copyright © 2009, Oracle. All rights reserved.2 - 8

Delimiters in String Literals

SET SERVEROUTPUT ON
DECLARE

event VARCHAR2(15);
BEGIN
event := q'!Father's day!';
DBMS_OUTPUT.PUT_LINE('3rd Sunday in June is :
'||event);
event := q'[Mother's day]';
DBMS_OUTPUT.PUT_LINE('2nd Sunday in May is :
'||event);

END;
/

Copyright © 2009, Oracle. All rights reserved.2 - 9

Types of Variables

• PL/SQL variables:
– Scalar
– Composite
– Reference
– Large object (LOB)

• Non-PL/SQL variables: Bind variables

Copyright © 2009, Oracle. All rights reserved.2 - 10

TRUE

Types of Variables

25-JAN-01

Atlanta256120.08

The soul of the lazy man
desires, and he has nothing;

but the soul of the diligent
shall be made rich.

Copyright © 2009, Oracle. All rights reserved.2 - 11

Guidelines for Declaring and Initializing PL/SQL
Variables

• Follow naming conventions.
• Use meaningful names for variables.
• Initialize variables designated as NOT NULL and

CONSTANT.
• Initialize variables with the assignment operator (:=) or the

DEFAULT keyword:

• Declare one identifier per line for better readability and
code maintenance.

Myname VARCHAR2(20):='John';

Myname VARCHAR2(20) DEFAULT 'John';

Copyright © 2009, Oracle. All rights reserved.2 - 12

Guidelines for Declaring and Initializing PL/SQL
Variables

• Avoid using column names as identifiers.

• Use the NOT NULL constraint when the variable must hold
a value.

DECLARE
employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO employee_id
FROM employees
WHERE last_name = 'Kochhar';

END;
/

Copyright © 2009, Oracle. All rights reserved.2 - 13

Scalar Data Types

• Hold a single value
• Have no internal components

Atlanta

TRUE 25-JAN-01

256120.08

The soul of the lazy man
desires, and he has nothing;

but the soul of the diligent
shall be made rich.

Copyright © 2009, Oracle. All rights reserved.2 - 14

Base Scalar Data Types

• CHAR [(maximum_length)]

• VARCHAR2 (maximum_length)

• LONG

• LONG RAW

• NUMBER [(precision, scale)]

• BINARY_INTEGER

• PLS_INTEGER

• BOOLEAN

• BINARY_FLOAT

• BINARY_DOUBLE

Copyright © 2009, Oracle. All rights reserved.2 - 16

Base Scalar Data Types

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Copyright © 2009, Oracle. All rights reserved.2 - 18

BINARY_FLOAT and BINARY_DOUBLE

• Represent floating point numbers in IEEE 754 format
• Offer better interoperability and operational speed
• Store values beyond the values that the data type NUMBER

can store
• Provide the benefits of closed arithmetic operations and

transparent rounding

Copyright © 2009, Oracle. All rights reserved.2 - 20

Declaring Scalar Variables

Examples
DECLARE

emp_job VARCHAR2(9);

count_loop BINARY_INTEGER := 0;

dept_total_sal NUMBER(9,2) := 0;

orderdate DATE := SYSDATE + 7;

c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

valid BOOLEAN NOT NULL := TRUE;

...

Copyright © 2009, Oracle. All rights reserved.2 - 21

%TYPE Attribute

The %TYPE attribute
• Is used to declare a variable according to:

– A database column definition
– Another declared variable

• Is prefixed with:
– The database table and column
– The name of the declared variable

Copyright © 2009, Oracle. All rights reserved.2 - 23

Declaring Variables
with the %TYPE Attribute

Syntax

Examples

...
emp_lname employees.last_name%TYPE;
balance NUMBER(7,2);
min_balance balance%TYPE := 1000;

...

identifier table.column_name%TYPE;

Copyright © 2009, Oracle. All rights reserved.2 - 24

Declaring Boolean Variables

• Only the values TRUE, FALSE, and NULL can be assigned
to a Boolean variable.

• Conditional expressions use the logical operators AND and
OR and the unary operator NOT to check the variable
values.

• The variables always yield TRUE, FALSE, or NULL.
• Arithmetic, character, and date expressions can be used to

return a Boolean value.

Copyright © 2009, Oracle. All rights reserved.2 - 25

Bind Variables

Bind variables are:
• Created in the environment
• Also called host variables
• Created with the VARIABLE keyword
• Used in SQL statements and PL/SQL blocks
• Accessed even after the PL/SQL block is executed
• Referenced with a preceding colon

Copyright © 2009, Oracle. All rights reserved.2 - 27

Printing Bind Variables

Example

VARIABLE emp_salary NUMBER

BEGIN
SELECT salary INTO :emp_salary
FROM employees WHERE employee_id = 178;

END;
/
PRINT emp_salary
SELECT first_name, last_name FROM employees
WHERE salary=:emp_salary;

Copyright © 2009, Oracle. All rights reserved.2 - 28

Printing Bind Variables

Example

VARIABLE emp_salary NUMBER
SET AUTOPRINT ON
BEGIN

SELECT salary INTO :emp_salary
FROM employees WHERE employee_id = 178;

END;
/

Copyright © 2009, Oracle. All rights reserved.2 - 29

Substitution Variables

• Are used to get user input at run time
• Are referenced within a PL/SQL block with a preceding

ampersand
• Are used to avoid hard-coding values that can be obtained

at run time

VARIABLE emp_salary NUMBER

SET AUTOPRINT ON

DECLARE

empno NUMBER(6):=&empno;

BEGIN

SELECT salary INTO :emp_salary

FROM employees WHERE employee_id = empno;

END;

/

Copyright © 2009, Oracle. All rights reserved.2 - 30

Substitution Variables

1

2

Copyright © 2009, Oracle. All rights reserved.2 - 31

Prompt for Substitution Variables

SET VERIFY OFF

VARIABLE emp_salary NUMBER

ACCEPT empno PROMPT 'Please enter a valid employee

number: '

SET AUTOPRINT ON

DECLARE

empno NUMBER(6):= &empno;

BEGIN

SELECT salary INTO :emp_salary FROM employees

WHERE employee_id = empno;

END;

/

Copyright © 2009, Oracle. All rights reserved.2 - 32

SET VERIFY OFF
DEFINE lname= Urman
DECLARE
fname VARCHAR2(25);

BEGIN
SELECT first_name INTO fname FROM employees
WHERE last_name='&lname';

END;
/

Using DEFINE for a User Variable

Example

Copyright © 2009, Oracle. All rights reserved.2 - 33

Composite Data Types

TRUE 23-DEC-98 ATLANTA

1 5000

2 2345

3 12

4 3456

1 SMITH

2 JONES

3 NANCY

4 TIM

PL/SQL table structure PL/SQL table structure

PLS_INTEGER

VARCHAR2

PLS_INTEGER

NUMBER

Copyright © 2009, Oracle. All rights reserved.2 - 34

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

Copyright © 2009, Oracle. All rights reserved.2 - 35

Summary

In this lesson, you should have learned how to:
• Recognize valid and invalid identifiers
• Declare variables in the declarative section of a PL/SQL

block
• Initialize variables and use them in the executable section
• Differentiate between scalar and composite data types
• Use the %TYPE attribute
• Use bind variables

Copyright © 2009, Oracle. All rights reserved.2 - 36

Practice 2: Overview

This practice covers the following topics:
• Determining valid identifiers
• Determining valid variable declarations
• Declaring variables within an anonymous block
• Using the %TYPE attribute to declare variables
• Declaring and printing a bind variable
• Executing a PL/SQL block

Copyright © 2009, Oracle. All rights reserved.

Writing Executable Statements

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify lexical units in a PL/SQL block
• Use built-in SQL functions in PL/SQL
• Describe when implicit conversions take place and when

explicit conversions have to be dealt with
• Write nested blocks and qualify variables with labels
• Write readable code with appropriate indentations

Copyright © 2009, Oracle. All rights reserved.3 - 3

Lexical Units in a PL/SQL Block

Lexical units:
• Are building blocks of any PL/SQL block
• Are sequences of characters including letters, numerals,

tabs, spaces, returns, and symbols
• Can be classified as:

– Identifiers
– Delimiters
– Literals
– Comments

Copyright © 2009, Oracle. All rights reserved.3 - 5

PL/SQL Block Syntax and Guidelines

• Literals:
– Character and date literals must be enclosed in single

quotation marks.

– Numbers can be simple values or scientific notation.
• Statements can continue over several lines.

name := 'Henderson';

Copyright © 2009, Oracle. All rights reserved.3 - 6

Commenting Code

• Prefix single-line comments with two hyphens (--).
• Place multiple-line comments between the

symbols /* and */.
Example

DECLARE
...
annual_sal NUMBER (9,2);
BEGIN -- Begin the executable section

/* Compute the annual salary based on the
monthly salary input from the user */

annual_sal := monthly_sal * 12;
END; -- This is the end of the block
/

Copyright © 2009, Oracle. All rights reserved.3 - 7

SQL Functions in PL/SQL

• Available in procedural statements:
– Single-row number
– Single-row character
– Data type conversion
– Date
– Timestamp
– GREATEST and LEAST
– Miscellaneous functions

• Not available in procedural statements:
– DECODE

– Group functions

Copyright © 2009, Oracle. All rights reserved.3 - 8

SQL Functions in PL/SQL: Examples

• Get the length of a string:

• Convert the employee name to lowercase:

desc_size INTEGER(5);
prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
desc_size:= LENGTH(prod_description);

emp_name:= LOWER(emp_name);

Copyright © 2009, Oracle. All rights reserved.3 - 9

Data Type Conversions

• Convert data to comparable data types
• Are of two types:

– Implicit conversions
– Explicit conversions

• Some conversion functions:
– TO_CHAR

– TO_DATE

– TO_NUMBER

– TO_TIMESTAMP

Copyright © 2009, Oracle. All rights reserved.3 - 11

Data Type Conversion

date_of_joining DATE:= '02-Feb-2000';

date_of_joining DATE:= 'February 02,2000';

date_of_joining DATE:= TO_DATE('February
02,2000','Month DD, YYYY');

1

2

3

Copyright © 2009, Oracle. All rights reserved.3 - 12

Nested Blocks

PL/SQL blocks can be nested.
• An executable section (BEGIN

… END) can contain nested
blocks.

• An exception section can
contain nested blocks.

Copyright © 2009, Oracle. All rights reserved.3 - 13

Nested Blocks

Example:

DECLARE
outer_variable VARCHAR2(20):='GLOBAL VARIABLE';
BEGIN
DECLARE
inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN
DBMS_OUTPUT.PUT_LINE(inner_variable);
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
DBMS_OUTPUT.PUT_LINE(outer_variable);
END;
/

Copyright © 2009, Oracle. All rights reserved.3 - 14

Variable Scope and Visibility

DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);

END;
/

1

2

Copyright © 2009, Oracle. All rights reserved.3 - 16

Qualify an Identifier

BEGIN <<outer>>
DECLARE
father_name VARCHAR2(20):='Patrick';
date_of_birth DATE:='20-Apr-1972';

BEGIN
DECLARE
child_name VARCHAR2(20):='Mike';
date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '

||outer.date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||child_name);
END;

DBMS_OUTPUT.PUT_LINE('Date of Birth: '||date_of_birth);
END;
END outer;

Copyright © 2009, Oracle. All rights reserved.3 - 17

Determining Variable Scope

BEGIN <<outer>>
DECLARE

sal NUMBER(7,2) := 60000;
comm NUMBER(7,2) := sal * 0.20;
message VARCHAR2(255) := ' eligible for commission';

BEGIN
DECLARE

sal NUMBER(7,2) := 50000;
comm NUMBER(7,2) := 0;
total_comp NUMBER(7,2) := sal + comm;

BEGIN
message := 'CLERK not'||message;
outer.comm := sal * 0.30;

END;
message := 'SALESMAN'||message;

END;
END outer;
/

1

2

Copyright © 2009, Oracle. All rights reserved.3 - 18

Operators in PL/SQL

• Logical
• Arithmetic
• Concatenation
• Parentheses to control order

of operations

• Exponential operator (**)

Same as in SQL

Copyright © 2009, Oracle. All rights reserved.3 - 19

Operators in PL/SQL

Examples:
• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

loop_count := loop_count + 1;

good_sal := sal BETWEEN 50000 AND 150000;

valid := (empno IS NOT NULL);

Copyright © 2009, Oracle. All rights reserved.3 - 20

Programming Guidelines

Make code maintenance easier by:
• Documenting code with comments
• Developing a case convention for the code
• Developing naming conventions for identifiers and other

objects
• Enhancing readability by indenting

Copyright © 2009, Oracle. All rights reserved.3 - 21

Indenting Code

For clarity, indent each level of code.
Example:

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;
/

DECLARE
deptno NUMBER(4);
location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO deptno,

location_id
FROM departments
WHERE department_name

= 'Sales';
...
END;
/

Copyright © 2009, Oracle. All rights reserved.3 - 22

Summary

In this lesson, you should have learned how to:
• Use built-in SQL functions in PL/SQL
• Write nested blocks to break logically related functionalities
• Decide when to perform explicit conversions
• Qualify variables in nested blocks

Copyright © 2009, Oracle. All rights reserved.3 - 23

Practice 3: Overview

This practice covers the following topics:
• Reviewing scoping and nesting rules
• Writing and testing PL/SQL blocks

Copyright © 2009, Oracle. All rights reserved.

Interacting with the Oracle Server

Copyright © 2009, Oracle. All rights reserved.4 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Determine which SQL statements can be directly included

in a PL/SQL executable block
• Manipulate data with DML statements in PL/SQL
• Use transaction control statements in PL/SQL
• Use the INTO clause to hold the values returned by a SQL

statement
• Differentiate between implicit cursors and explicit cursors
• Use SQL cursor attributes

Copyright © 2009, Oracle. All rights reserved.4 - 3

SQL Statements in PL/SQL

• Retrieve a row from the database by using the SELECT
command.

• Make changes to rows in the database by using DML
commands.

• Control a transaction with the COMMIT, ROLLBACK, or
SAVEPOINT command.

Copyright © 2009, Oracle. All rights reserved.4 - 5

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT statement.
Syntax:
SELECT select_list
INTO {variable_name[, variable_name]...

| record_name}
FROM table
[WHERE condition];

Copyright © 2009, Oracle. All rights reserved.4 - 7

SELECT Statements in PL/SQL

• The INTO clause is required.
• Queries must return only one row.

Example

SET SERVEROUTPUT ON

DECLARE

fname VARCHAR2(25);

BEGIN

SELECT first_name INTO fname

FROM employees WHERE employee_id=200;

DBMS_OUTPUT.PUT_LINE(' First Name is : '||fname);

END;

/

Copyright © 2009, Oracle. All rights reserved.4 - 9

Retrieving Data in PL/SQL

Retrieve hire_date and salary for the specified employee.

Example:

DECLARE
emp_hiredate employees.hire_date%TYPE;
emp_salary employees.salary%TYPE;
BEGIN
SELECT hire_date, salary
INTO emp_hiredate, emp_salary
FROM employees
WHERE employee_id = 100;

END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 10

SET SERVEROUTPUT ON
DECLARE

sum_sal NUMBER(10,2);
deptno NUMBER NOT NULL := 60;

BEGIN
SELECT SUM(salary) -- group function
INTO sum_sal FROM employees
WHERE department_id = deptno;
DBMS_OUTPUT.PUT_LINE ('The sum of salary is '
|| sum_sal);

END;
/

Retrieving Data in PL/SQL

Return the sum of the salaries for all the employees in the
specified department.
Example:

Copyright © 2009, Oracle. All rights reserved.4 - 11

Naming Conventions

DECLARE
hire_date employees.hire_date%TYPE;
sysdate hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date, sysdate
INTO hire_date, sysdate
FROM employees
WHERE employee_id = employee_id;

END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 12

Naming Conventions

• Use a naming convention to avoid ambiguity in the WHERE
clause.

• Avoid using database column names as identifiers.
• Syntax errors can arise because PL/SQL checks the

database first for a column in the table.
• The names of local variables and formal parameters take

precedence over the names of database tables.
• The names of database table columns take precedence

over the names of local variables.

Copyright © 2009, Oracle. All rights reserved.4 - 13

Manipulating Data Using PL/SQL

Make changes to database tables by using DML commands:
• INSERT

• UPDATE

• DELETE

• MERGE

INSERT

UPDATE

DELETE

MERGE

Copyright © 2009, Oracle. All rights reserved.4 - 14

Inserting Data

Add new employee information to the EMPLOYEES table.

Example:

BEGIN
INSERT INTO employees
(employee_id, first_name, last_name, email,
hire_date, job_id, salary)
VALUES(employees_seq.NEXTVAL, 'Ruth', 'Cores',
'RCORES',sysdate, 'AD_ASST', 4000);

END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 15

Updating Data

Increase the salary of all employees who are stock clerks.

Example:

DECLARE
sal_increase employees.salary%TYPE := 800;

BEGIN
UPDATE employees
SET salary = salary + sal_increase
WHERE job_id = 'ST_CLERK';

END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 16

Deleting Data

Delete rows that belong to department 10 from the employees
table.

Example:

DECLARE
deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM employees
WHERE department_id = deptno;

END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 17

Merging Rows

Insert or update rows in the copy_emp table to match the
employees table.
DECLARE

empno employees.employee_id%TYPE := 100;
BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.empno)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

. . .,e.department_id);
END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 19

SQL Cursor

• A cursor is a pointer to the private memory area allocated
by the Oracle server.

• There are two types of cursors:
– Implicit: Created and managed internally by the Oracle

server to process SQL statements
– Explicit: Explicitly declared by the programmer

Copyright © 2009, Oracle. All rights reserved.4 - 21

SQL Cursor Attributes for Implicit Cursors

Using SQL cursor attributes, you can test the outcome of your
SQL statements.

Boolean attribute that evaluates to TRUE if

the most recent SQL statement did not
return even one row

SQL%NOTFOUND

Boolean attribute that evaluates to TRUE if the most

recent SQL statement returned at least one row

SQL%FOUND

An integer value that represents the number of rows
affected by the most recent SQL statement

SQL%ROWCOUNT

Copyright © 2009, Oracle. All rights reserved.4 - 22

SQL Cursor Attributes for Implicit Cursors

Delete rows that have the specified employee ID from the
employees table. Print the number of rows deleted.

Example

VARIABLE rows_deleted VARCHAR2(30)
DECLARE
empno employees.employee_id%TYPE := 176;

BEGIN
DELETE FROM employees
WHERE employee_id = empno;
:rows_deleted := (SQL%ROWCOUNT ||

' row deleted.');
END;
/
PRINT rows_deleted

Copyright © 2009, Oracle. All rights reserved.4 - 23

Summary

In this lesson, you should have learned how to:
• Embed DML statements, transaction control statements,

and DDL statements in PL/SQL
• Use the INTO clause, which is mandatory for all SELECT

statements in PL/SQL
• Differentiate between implicit cursors and explicit cursors
• Use SQL cursor attributes to determine the outcome of

SQL statements

Copyright © 2009, Oracle. All rights reserved.4 - 24

Practice 4: Overview

This practice covers the following topics:
• Selecting data from a table
• Inserting data into a table
• Updating data in a table
• Deleting a record from a table

Copyright © 2009, Oracle. All rights reserved.

Writing Control Structures

Copyright © 2009, Oracle. All rights reserved.5 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify the uses and types of control structures
• Construct an IF statement
• Use CASE statements and CASE expressions
• Construct and identify different loop statements
• Use guidelines when using conditional control structures

Copyright © 2009, Oracle. All rights reserved.5 - 3

Controlling Flow of Execution

for
loop

while

Copyright © 2009, Oracle. All rights reserved.5 - 4

IF Statements

Syntax:

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

Copyright © 2009, Oracle. All rights reserved.5 - 6

Simple IF Statement

DECLARE
myage number:=31;

BEGIN
IF myage < 11
THEN
DBMS_OUTPUT.PUT_LINE(' I am a child ');

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 7

IF THEN ELSE Statement

SET SERVEROUTPUT ON
DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 8

IF ELSIF ELSE Clause

DECLARE
myage number:=31;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSIF myage < 20
THEN
DBMS_OUTPUT.PUT_LINE(' I am young ');

ELSIF myage < 30
THEN
DBMS_OUTPUT.PUT_LINE(' I am in my twenties');

ELSIF myage < 40
THEN
DBMS_OUTPUT.PUT_LINE(' I am in my thirties');

ELSE
DBMS_OUTPUT.PUT_LINE(' I am always young ');

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 9

NULL Values in IF Statements

DECLARE
myage number;
BEGIN
IF myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 10

CASE Expressions

• A CASE expression selects a result and returns it.
• To select the result, the CASE expression uses

expressions. The value returned by these expressions is
used to select one of several alternatives.

CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN
[ELSE resultN+1]

END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 11

CASE Expressions: Example

SET SERVEROUTPUT ON
SET VERIFY OFF
DECLARE

grade CHAR(1) := UPPER('&grade');
appraisal VARCHAR2(20);

BEGIN
appraisal :=

CASE grade
WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good'
WHEN 'C' THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| grade || '

Appraisal ' || appraisal);
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 12

Searched CASE Expressions

DECLARE
grade CHAR(1) := UPPER('&grade');
appraisal VARCHAR2(20);

BEGIN
appraisal :=
CASE

WHEN grade = 'A' THEN 'Excellent'
WHEN grade IN ('B','C') THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| grade || '

Appraisal ' || appraisal);
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 13

CASE Statement
DECLARE

deptid NUMBER;
deptname VARCHAR2(20);
emps NUMBER;
mngid NUMBER:= 108;

BEGIN
CASE mngid
WHEN 108 THEN
SELECT department_id, department_name
INTO deptid, deptname FROM departments
WHERE manager_id=108;

SELECT count(*) INTO emps FROM employees
WHERE department_id=deptid;

WHEN 200 THEN
...

END CASE;
DBMS_OUTPUT.PUT_LINE ('You are working in the '|| deptname||
' department. There are '||emps ||' employees in this
department');
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 14

Handling Nulls

When working with nulls, you can avoid some common
mistakes by keeping in mind the following rules:
• Simple comparisons involving nulls always yield NULL.
• Applying the logical operator NOT to a null yields NULL.
• If the condition yields NULL in conditional control

statements, its associated sequence of statements is not
executed.

Copyright © 2009, Oracle. All rights reserved.5 - 15

Logic Tables

Build a simple Boolean condition with a comparison operator.

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

NOT

TRUE

FALSE

NULL

FALSE

TRUE

NULL

TRUE

NULL

OR TRUE FALSE NULL

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULLFALSE

Copyright © 2009, Oracle. All rights reserved.5 - 16

Boolean Conditions

What is the value of flag in each case?

flag := reorder_flag AND available_flag;

? (3)TRUENULL

? (1)TRUETRUE

? (4)FALSENULL

FALSE

AVAILABLE_FLAG

? (2)TRUE

FLAGREORDER_FLAG

Copyright © 2009, Oracle. All rights reserved.5 - 17

Iterative Control: LOOP Statements

• Loops repeat a statement or sequence of statements
multiple times.

• There are three loop types:
– Basic loop
– FOR loop
– WHILE loop

Copyright © 2009, Oracle. All rights reserved.5 - 18

Basic Loops

Syntax:

LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

Copyright © 2009, Oracle. All rights reserved.5 - 19

DECLARE
countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
counter NUMBER(2) := 1;
new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO loc_id FROM locations
WHERE country_id = countryid;
LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + counter), new_city, countryid);
counter := counter + 1;
EXIT WHEN counter > 3;

END LOOP;
END;
/

Basic Loops

Example

Copyright © 2009, Oracle. All rights reserved.5 - 20

WHILE Loops

Syntax:

Use the WHILE loop to repeat statements while a condition is
TRUE.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

Copyright © 2009, Oracle. All rights reserved.5 - 21

WHILE Loops

Example

DECLARE
countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
new_city locations.city%TYPE := 'Montreal';
counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO loc_id FROM locations
WHERE country_id = countryid;
WHILE counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + counter), new_city, countryid);
counter := counter + 1;

END LOOP;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 22

FOR Loops

• Use a FOR loop to shortcut the test for the number of
iterations.

• Do not declare the counter; it is declared implicitly.
• 'lower_bound .. upper_bound' is required syntax.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

Copyright © 2009, Oracle. All rights reserved.5 - 24

FOR Loops

Example:

DECLARE
countryid locations.country_id%TYPE := 'CA';
loc_id locations.location_id%TYPE;
new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO loc_id

FROM locations
WHERE country_id = countryid;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((loc_id + i), new_city, countryid);

END LOOP;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 25

FOR Loops

Guidelines
• Reference the counter within the loop only; it is undefined

outside the loop.
• Do not reference the counter as the target of an

assignment.
• Neither loop bound should be NULL.

Copyright © 2009, Oracle. All rights reserved.5 - 26

Guidelines for Loops

• Use the basic loop when the statements inside the loop
must execute at least once.

• Use the WHILE loop if the condition must be evaluated at
the start of each iteration.

• Use a FOR loop if the number of iterations is known.

Copyright © 2009, Oracle. All rights reserved.5 - 27

Nested Loops and Labels

• You can nest loops to multiple levels.
• Use labels to distinguish between blocks and loops.
• Exit the outer loop with the EXIT statement that references

the label.

Copyright © 2009, Oracle. All rights reserved.5 - 28

Nested Loops and Labels

...
BEGIN
<<Outer_loop>>
LOOP
counter := counter+1;

EXIT WHEN counter>10;
<<Inner_loop>>
LOOP
...
EXIT Outer_loop WHEN total_done = 'YES';
-- Leave both loops
EXIT WHEN inner_done = 'YES';
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;
/

Copyright © 2009, Oracle. All rights reserved.5 - 29

Summary

In this lesson, you should have learned how to change the
logical flow of statements by using the following control
structures:
• Conditional (IF statement)
• CASE expressions and CASE statements
• Loops:

– Basic loop
– FOR loop
– WHILE loop

• EXIT statements

Copyright © 2009, Oracle. All rights reserved.5 - 30

Practice 5: Overview

This practice covers the following topics:
• Performing conditional actions by using the IF statement
• Performing iterative steps by using the loop structure

Copyright © 2009, Oracle. All rights reserved.

Working with Composite
Data Types

Copyright © 2009, Oracle. All rights reserved.6 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Create user-defined PL/SQL records
• Create a record with the %ROWTYPE attribute
• Create an INDEX BY table
• Create an INDEX BY table of records
• Describe the differences among records, tables, and tables

of records

Copyright © 2009, Oracle. All rights reserved.6 - 3

Composite Data Types

• Can hold multiple values (unlike scalar types)
• Are of two types:

– PL/SQL records
– PL/SQL collections

— INDEX BY tables or associative arrays
— Nested table
— VARRAY

Copyright © 2009, Oracle. All rights reserved.6 - 4

Composite Data Types

• Use PL/SQL records when you want to store values of
different data types but only one occurrence at a time.

• Use PL/SQL collections when you want to store values of
the same data type.

Copyright © 2009, Oracle. All rights reserved.6 - 5

PL/SQL Records

• Must contain one or more components (called fields) of
any scalar, RECORD, or INDEX BY table data type

• Are similar to structures in most 3GL languages (including
C and C++)

• Are user defined and can be a subset of a row in a table
• Treat a collection of fields as a logical unit
• Are convenient for fetching a row of data from a table for

processing

Copyright © 2009, Oracle. All rights reserved.6 - 6

Creating a PL/SQL Record

Syntax:

TYPE type_name IS RECORD

(field_declaration[, field_declaration]…);

field_name {field_type | variable%TYPE

| table.column%TYPE | table%ROWTYPE}

[[NOT NULL] {:= | DEFAULT} expr]

identifier type_name;

1

2

field_declaration:

Copyright © 2009, Oracle. All rights reserved.6 - 7

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of a new
employee.

Example:

...
TYPE emp_record_type IS RECORD
(last_name VARCHAR2(25),
job_id VARCHAR2(10),
salary NUMBER(8,2));

emp_record emp_record_type;
...

Copyright © 2009, Oracle. All rights reserved.6 - 8

PL/SQL Record Structure

Example:

100 King AD_PRES

employee_id number(6) last_name varchar2(25) job_id varchar2(10)
Field2 (data type) Field3 (data type)Field1 (data type)

Field2 (data type) Field3 (data type)Field1 (data type)

Copyright © 2009, Oracle. All rights reserved.6 - 9

%ROWTYPE Attribute

• Declare a variable according to a collection of columns in a
database table or view.

• Prefix %ROWTYPE with the database table or view.
• Fields in the record take their names and data types from

the columns of the table or view.

Syntax:

DECLARE
identifier reference%ROWTYPE;

Copyright © 2009, Oracle. All rights reserved.6 - 11

Advantages of Using %ROWTYPE

• The number and data types of the underlying database
columns need not be known—and in fact might change at
run time.

• The %ROWTYPE attribute is useful when retrieving a row
with the SELECT * statement.

Copyright © 2009, Oracle. All rights reserved.6 - 12

%ROWTYPE Attribute

...

DEFINE employee_number = 124

DECLARE

emp_rec employees%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps(empno, ename, job, mgr,

hiredate, leavedate, sal, comm, deptno)

VALUES (emp_rec.employee_id, emp_rec.last_name,

emp_rec.job_id,emp_rec.manager_id,

emp_rec.hire_date, SYSDATE, emp_rec.salary,

emp_rec.commission_pct, emp_rec.department_id);

END;

/

Copyright © 2009, Oracle. All rights reserved.6 - 13

Inserting a Record
by Using %ROWTYPE

...

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT employee_id, last_name, job_id, manager_id,

hire_date, hire_date, salary, commission_pct,

department_id INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps VALUES emp_rec;

END;

/

SELECT * FROM retired_emps;

Copyright © 2009, Oracle. All rights reserved.6 - 14

Updating a Row in a Table
by Using a Record

SET SERVEROUTPUT ON

SET VERIFY OFF

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM retired_emps;

emp_rec.leavedate:=SYSDATE;

UPDATE retired_emps SET ROW = emp_rec WHERE

empno=&employee_number;

END;

/

SELECT * FROM retired_emps;

Copyright © 2009, Oracle. All rights reserved.6 - 15

INDEX BY Tables or Associative Arrays

• Are PL/SQL structures with two columns:
– Primary key of integer or string data type
– Column of scalar or record data type

• Are unconstrained in size. However, the size depends on
the values that the key data type can hold.

Copyright © 2009, Oracle. All rights reserved.6 - 16

Creating an INDEX BY Table

Syntax:

Declare an INDEX BY table to store the last names of
employees:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table%ROWTYPE
[INDEX BY PLS_INTEGER | BINARY_INTEGER
| VARCHAR2(<size>)];

identifier type_name;

...
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;
...
ename_table ename_table_type;

Copyright © 2009, Oracle. All rights reserved.6 - 18

INDEX BY Table Structure

Unique key Value
... ...

1 Jones
5 Smith
3 Maduro

... ...

PLS_INTEGER Scalar

Copyright © 2009, Oracle. All rights reserved.6 - 19

Creating an INDEX BY Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY PLS_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...
...

END;

/

Copyright © 2009, Oracle. All rights reserved.6 - 20

Using INDEX BY Table Methods

The following methods make INDEX BY tables easier to use:
• EXISTS

• COUNT

• FIRST and LAST

• PRIOR

• NEXT

• DELETE

Copyright © 2009, Oracle. All rights reserved.6 - 21

INDEX BY Table of Records

Define an INDEX BY table variable to hold an entire row from a
table.

Example:

DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE
INDEX BY PLS_INTEGER;

dept_table dept_table_type;

-- Each element of dept_table is a record

Copyright © 2009, Oracle. All rights reserved.6 - 23

INDEX BY Table of Records: Example

SET SERVEROUTPUT ON
DECLARE

TYPE emp_table_type IS TABLE OF
employees%ROWTYPE INDEX BY PLS_INTEGER;

my_emp_table emp_table_type;
max_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..max_count
LOOP
SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;
/

Copyright © 2009, Oracle. All rights reserved.6 - 24

Nested Tables

1
2
3
4
..

2 GB

Bombay
Sydney
Oxford
London
....

Copyright © 2009, Oracle. All rights reserved.6 - 26

Bombay
Sydney
Oxford
London
....

VARRAY

Tokyo

1
2
3
4
..

10

Copyright © 2009, Oracle. All rights reserved.6 - 27

Summary

In this lesson, you should have learned how to:
• Define and reference PL/SQL variables of composite data

types
– PL/SQL record
– INDEX BY table
– INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE attribute

Copyright © 2009, Oracle. All rights reserved.6 - 28

Practice 6: Overview

This practice covers the following topics:
• Declaring INDEX BY tables
• Processing data by using INDEX BY tables
• Declaring a PL/SQL record
• Processing data by using a PL/SQL record

Copyright © 2009, Oracle. All rights reserved.

Using Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.7 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Distinguish between implicit and explicit cursors
• Discuss the reasons for using explicit cursors
• Declare and control explicit cursors
• Use simple loops and cursor FOR loops to fetch data
• Declare and use cursors with parameters
• Lock rows with the FOR UPDATE clause
• Reference the current row with the WHERE CURRENT OF

clause

Copyright © 2009, Oracle. All rights reserved.7 - 3

Cursors

Every SQL statement executed by the Oracle server has an
associated individual cursor:
• Implicit cursors: Declared and managed by PL/SQL for all

DML and PL/SQL SELECT statements
• Explicit cursors: Declared and managed by the

programmer

Copyright © 2009, Oracle. All rights reserved.7 - 4

Explicit Cursor Operations

Active set

Table

100 King AD_PRES

101 Kochhar AD_VP

102 De Haan AD_VP

. . .

. . .

. . .

139 Seo ST_CLERK

140 Patel ST_CLERK

. . .

Copyright © 2009, Oracle. All rights reserved.7 - 5

Controlling Explicit Cursors

• Load the
current
row into
variables.

FETCH

• Test for
existing
rows.

EMPTY?

• Return to
FETCH if
rows are
found.

No

• Release the
active set.

CLOSE
Yes

• Create a
named
SQL area.

DECLARE

• Identify the
active set.

OPEN

Copyright © 2009, Oracle. All rights reserved.7 - 6

Controlling Explicit Cursors

Fetch a row.

Close the cursor.

Cursor
pointer

Open the cursor.1

2

3

Cursor
pointer

Cursor
pointer

Copyright © 2009, Oracle. All rights reserved.7 - 7

Declaring the Cursor

Syntax:

Examples:

CURSOR cursor_name IS

select_statement;

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

DECLARE
locid NUMBER:= 1700;
CURSOR dept_cursor IS
SELECT * FROM departments
WHERE location_id = locid;

...

Copyright © 2009, Oracle. All rights reserved.7 - 9

Opening the Cursor

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...
BEGIN
OPEN emp_cursor;

Copyright © 2009, Oracle. All rights reserved.7 - 10

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
empno employees.employee_id%TYPE;
lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
FETCH emp_cursor INTO empno, lname;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);
...

END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 12

Fetching Data from the Cursor

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
empno employees.employee_id%TYPE;
lname employees.last_name%TYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO empno, lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;
...

END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 13

Closing the Cursor

...
LOOP
FETCH emp_cursor INTO empno, lname;
EXIT WHEN emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;
CLOSE emp_cursor;
END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 14

Cursors and Records

Process the rows of the active set by fetching values into a
PL/SQL record.

DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
emp_record emp_cursor%ROWTYPE;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO emp_record;

...

Copyright © 2009, Oracle. All rights reserved.7 - 15

Cursor FOR Loops

Syntax:

• The cursor FOR loop is a shortcut to process explicit
cursors.

• Implicit open, fetch, exit, and close occur.
• The record is implicitly declared.

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Copyright © 2009, Oracle. All rights reserved.7 - 16

Cursor FOR Loops

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

BEGIN
FOR emp_record IN emp_cursor
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id
||' ' ||emp_record.last_name);
END LOOP;

END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 17

Explicit Cursor Attributes

Obtain status information about a cursor.

Evaluates to TRUE if the most recent fetch
returns a row; complement of %NOTFOUND

Boolean%FOUND

%ROWCOUNT

%NOTFOUND

%ISOPEN

Attribute

Evaluates to TRUE if the cursor is openBoolean

Evaluates to the total number of rows
returned so far

Boolean

Evaluates to TRUE if the most recent fetch
does not return a row

Description

Boolean

Type

Copyright © 2009, Oracle. All rights reserved.7 - 18

%ISOPEN Attribute

• Fetch rows only when the cursor is open.
• Use the %ISOPEN cursor attribute before performing a

fetch to test whether the cursor is open.

Example:

IF NOT emp_cursor%ISOPEN THEN
OPEN emp_cursor;

END IF;
LOOP
FETCH emp_cursor...

Copyright © 2009, Oracle. All rights reserved.7 - 19

%ROWCOUNT and %NOTFOUND: Example

SET SERVEROUTPUT ON
DECLARE
empno employees.employee_id%TYPE;
ename employees.last_name%TYPE;
CURSOR emp_cursor IS SELECT employee_id,
last_name FROM employees;

BEGIN
OPEN emp_cursor;
LOOP
FETCH emp_cursor INTO empno, ename;
EXIT WHEN emp_cursor%ROWCOUNT > 10 OR

emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(empno)

||' '|| ename);
END LOOP;
CLOSE emp_cursor;

END ;
/

Copyright © 2009, Oracle. All rights reserved.7 - 20

Cursor FOR Loops Using Subqueries

There is no need to declare the cursor.

Example:

SET SERVEROUTPUT ON
BEGIN
FOR emp_record IN (SELECT employee_id, last_name
FROM employees WHERE department_id =30)
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id ||'
'||emp_record.last_name);
END LOOP;

END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 21

Cursors with Parameters

Syntax:

• Pass the parameter values to a cursor when the cursor is
opened and the query is executed.

• Open an explicit cursor several times with a different active
set each time.

CURSOR cursor_name
[(parameter_name datatype, ...)]

IS
select_statement;

OPEN cursor_name(parameter_value,.....) ;

Copyright © 2009, Oracle. All rights reserved.7 - 22

Cursors with Parameters

SET SERVEROUTPUT ON
DECLARE
CURSOR emp_cursor (deptno NUMBER) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = deptno;
dept_id NUMBER;
lname VARCHAR2(15);

BEGIN
OPEN emp_cursor (10);
...
CLOSE emp_cursor;
OPEN emp_cursor (20);
...

Copyright © 2009, Oracle. All rights reserved.7 - 23

FOR UPDATE Clause

Syntax:

• Use explicit locking to deny access to other sessions for
the duration of a transaction.

• Lock the rows before the update or delete.

SELECT ...
FROM ...
FOR UPDATE [OF column_reference][NOWAIT | WAIT n];

Copyright © 2009, Oracle. All rights reserved.7 - 25

WHERE CURRENT OF Clause

Syntax:

• Use cursors to update or delete the current row.
• Include the FOR UPDATE clause in the cursor query to lock

the rows first.
• Use the WHERE CURRENT OF clause to reference the

current row from an explicit cursor.

WHERE CURRENT OF cursor ;

UPDATE employees
SET salary = ...
WHERE CURRENT OF emp_cursor;

Copyright © 2009, Oracle. All rights reserved.7 - 26

Cursors with Subqueries

Example:

DECLARE
CURSOR my_cursor IS
SELECT t1.department_id, t1.department_name,

t2.staff
FROM departments t1, (SELECT department_id,

COUNT(*) AS staff
FROM employees
GROUP BY department_id) t2

WHERE t1.department_id = t2.department_id
AND t2.staff >= 3;

...

Copyright © 2009, Oracle. All rights reserved.7 - 27

Summary

In this lesson, you should have learned how to:
• Distinguish cursor types:

– Implicit cursors are used for all DML statements and single-
row queries.

– Explicit cursors are used for queries of zero, one, or more
rows.

• Create and handle explicit cursors
• Use simple loops and cursor FOR loops to handle multiple

rows in the cursors
• Evaluate the cursor status by using the cursor attributes
• Use the FOR UPDATE and WHERE CURRENT OF clauses

to update or delete the current fetched row

Copyright © 2009, Oracle. All rights reserved.7 - 28

Practice 7: Overview

This practice covers the following topics:
• Declaring and using explicit cursors to query rows of a

table
• Using a cursor FOR loop
• Applying cursor attributes to test the cursor status
• Declaring and using cursors with parameters
• Using the FOR UPDATE and WHERE CURRENT OF clauses

Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions

Copyright © 2009, Oracle. All rights reserved.8 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Define PL/SQL exceptions
• Recognize unhandled exceptions
• List and use different types of PL/SQL exception handlers
• Trap unanticipated errors
• Describe the effect of exception propagation in nested

blocks
• Customize PL/SQL exception messages

Copyright © 2009, Oracle. All rights reserved.8 - 3

Example of an Exception

SET SERVEROUTPUT ON

DECLARE

lname VARCHAR2(15);

BEGIN

SELECT last_name INTO lname FROM employees WHERE

first_name='John';

DBMS_OUTPUT.PUT_LINE ('John''s last name is : '
||lname);

END;

/

Copyright © 2009, Oracle. All rights reserved.8 - 4

Example of an Exception

SET SERVEROUTPUT ON

DECLARE

lname VARCHAR2(15);

BEGIN

SELECT last_name INTO lname FROM employees WHERE

first_name='John';

DBMS_OUTPUT.PUT_LINE ('John''s last name is : '
||lname);

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement
retrieved multiple rows. Consider using a
cursor.');

END;

/

Copyright © 2009, Oracle. All rights reserved.8 - 5

Handling Exceptions with PL/SQL

• An exception is a PL/SQL error that is raised during
program execution.

• An exception can be raised:
– Implicitly by the Oracle server
– Explicitly by the program

• An exception can be handled:
– By trapping it with a handler
– By propagating it to the calling environment

Copyright © 2009, Oracle. All rights reserved.8 - 6

Handling Exceptions

Exception
is raised.

Is the
exception
trapped?

Yes

Execute statements
in the EXCEPTION

section.

Terminate
gracefully.

No
Terminate
abruptly.

Propagate the
exception.

Copyright © 2009, Oracle. All rights reserved.8 - 7

Exception Types

• Predefined Oracle server
• Non-predefined Oracle server

• User-defined

} Implicitly raised

Explicitly raised

Copyright © 2009, Oracle. All rights reserved.8 - 8

Trapping Exceptions

Syntax:

EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN
statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Copyright © 2009, Oracle. All rights reserved.8 - 10

Guidelines for Trapping Exceptions

• The EXCEPTION keyword starts the exception handling
section.

• Several exception handlers are allowed.
• Only one handler is processed before leaving the block.
• WHEN OTHERS is the last clause.

Copyright © 2009, Oracle. All rights reserved.8 - 11

Trapping Predefined Oracle Server Errors

• Reference the predefined name in the exception-handling
routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Copyright © 2009, Oracle. All rights reserved.8 - 14

Trapping Non-Predefined
Oracle Server Errors

Declarative section

Declare

Name the
exception.

Use PRAGMA
EXCEPTION_INIT.

EXCEPTION section

Handle the raised
exception.

Associate Reference

Copyright © 2009, Oracle. All rights reserved.8 - 15

SET SERVEROUTPUT ON

DECLARE

insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT
(insert_excep, -01400);

BEGIN

INSERT INTO departments
(department_id, department_name) VALUES (280, NULL);

EXCEPTION

WHEN insert_excep THEN

DBMS_OUTPUT.PUT_LINE('INSERT OPERATION FAILED');

DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

Non-Predefined Error

To trap Oracle server error number –01400
(“cannot insert NULL”):

1
2

3

Copyright © 2009, Oracle. All rights reserved.8 - 16

Functions for Trapping Exceptions

• SQLCODE: Returns the numeric value for the error code
• SQLERRM: Returns the message associated with the error

number

Copyright © 2009, Oracle. All rights reserved.8 - 17

Functions for Trapping Exceptions

Example:
DECLARE

error_code NUMBER;
error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
...

WHEN OTHERS THEN
ROLLBACK;
error_code := SQLCODE ;
error_message := SQLERRM ;

INSERT INTO errors (e_user, e_date, error_code,

error_message) VALUES(USER,SYSDATE,error_code,

error_message);
END;
/

Copyright © 2009, Oracle. All rights reserved.8 - 18

Trapping User-Defined Exceptions

Declarative
section

Name the
exception.

Executable
section

Explicitly raise
the exception by
using the RAISE

statement.

Exception-handling
section

Handle the raised
exception.

Raise ReferenceDeclare

Copyright © 2009, Oracle. All rights reserved.8 - 19

Trapping User-Defined Exceptions

ACCEPT deptno PROMPT 'Please enter the department number:'
ACCEPT name PROMPT 'Please enter the department name:'
DECLARE

invalid_department EXCEPTION;
name VARCHAR2(20):='&name';
deptno NUMBER :=&deptno;

BEGIN
UPDATE departments
SET department_name = name
WHERE department_id = deptno;
IF SQL%NOTFOUND THEN

RAISE invalid_department;
END IF;
COMMIT;

EXCEPTION
WHEN invalid_department THEN

DBMS_OUTPUT.PUT_LINE('No such department id.');
END;
/

1

2

3

Copyright © 2009, Oracle. All rights reserved.8 - 20

Calling Environments

Traps the exception in exception-handling routine of
enclosing block

An enclosing PL/SQL
block

Accesses the exception number through the SQLCA
data structure

Precompiler
application

Accesses error number and message in an
ON-ERROR trigger by means of the ERROR_CODE
and ERROR_TEXT packaged functions

Oracle Developer
Forms

Displays error number and message to screenSQL Developer

Displays error number and message to screenSQL*Plus

Copyright © 2009, Oracle. All rights reserved.8 - 21

Propagating Exceptions in a Subblock

DECLARE
. . .
no_rows exception;
integrity exception;
PRAGMA EXCEPTION_INIT (integrity, -2292);

BEGIN
FOR c_record IN emp_cursor LOOP
BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN
RAISE no_rows;

END IF;
END;

END LOOP;
EXCEPTION
WHEN integrity THEN ...
WHEN no_rows THEN ...

END;
/

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

Copyright © 2009, Oracle. All rights reserved.8 - 22

RAISE_APPLICATION_ERROR Procedure

Syntax:

• You can use this procedure to issue user-defined error
messages from stored subprograms.

• You can report errors to your application and avoid
returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

Copyright © 2009, Oracle. All rights reserved.8 - 23

RAISE_APPLICATION_ERROR Procedure

• Used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner consistent
with other Oracle server errors

Copyright © 2009, Oracle. All rights reserved.8 - 24

RAISE_APPLICATION_ERROR Procedure

Executable section:

Exception section:

BEGIN
...

DELETE FROM employees
WHERE manager_id = v_mgr;

IF SQL%NOTFOUND THEN
RAISE_APPLICATION_ERROR(-20202,

'This is not a valid manager');
END IF;
...

...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,

'Manager is not a valid employee.');
END;
/

Copyright © 2009, Oracle. All rights reserved.8 - 25

Summary

In this lesson, you should have learned how to:
• Define PL/SQL exceptions
• Add an EXCEPTION section to the PL/SQL block to deal

with exceptions at run time
• Handle different types of exceptions:

– Predefined exceptions
– Non-predefined exceptions
– User-defined exceptions

• Propagate exceptions in nested blocks and call
applications

Copyright © 2009, Oracle. All rights reserved.8 - 26

Practice 8: Overview

This practice covers the following topics:
• Handling named exceptions
• Creating and invoking user-defined exceptions

Copyright © 2009, Oracle. All rights reserved.

Creating Stored Procedures and Functions

Copyright © 2009, Oracle. All rights reserved.9 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Differentiate between anonymous blocks and subprograms
• Create a simple procedure and invoke it from an

anonymous block
• Create a simple function
• Create a simple function that accepts a parameter
• Differentiate between procedures and functions

Copyright © 2009, Oracle. All rights reserved.9 - 3

Procedures and Functions

• Are named PL/SQL blocks
• Are called PL/SQL subprograms
• Have block structures similar to anonymous blocks:

– Optional declarative section (without DECLARE keyword)
– Mandatory executable section
– Optional section to handle exceptions

Copyright © 2009, Oracle. All rights reserved.9 - 4

Differences Between Anonymous Blocks and
Subprograms

Can take parametersCannot take parameters

Subprograms called functions must return
values.

Do not return values

Named and, therefore, can be invoked by
other applications

Cannot be invoked by other
applications

Stored in the databaseNot stored in the database

Compiled only onceCompiled every time

Named PL/SQL blocksUnnamed PL/SQL blocks

SubprogramsAnonymous Blocks

Copyright © 2009, Oracle. All rights reserved.9 - 5

Procedure: Syntax

CREATE [OR REPLACE] PROCEDURE procedure_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

IS|AS
procedure_body;

Copyright © 2009, Oracle. All rights reserved.9 - 6

Procedure: Example

CREATE TABLE dept AS SELECT * FROM departments;

CREATE PROCEDURE add_dept IS

dept_id dept.department_id%TYPE;

dept_name dept.department_name%TYPE;

BEGIN

dept_id:=280;

dept_name:='ST-Curriculum';

INSERT INTO dept(department_id,department_name)

VALUES(dept_id,dept_name);

DBMS_OUTPUT.PUT_LINE(' Inserted '||

SQL%ROWCOUNT ||' row ');

END;

/

Copyright © 2009, Oracle. All rights reserved.9 - 8

Invoking the Procedure

BEGIN
add_dept;
END;
/
SELECT department_id, department_name FROM dept
WHERE department_id=280;

Copyright © 2009, Oracle. All rights reserved.9 - 9

Function: Syntax

CREATE [OR REPLACE] FUNCTION function_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

RETURN datatype
IS|AS
function_body;

Copyright © 2009, Oracle. All rights reserved.9 - 10

Function: Example
CREATE FUNCTION check_sal RETURN Boolean IS
dept_id employees.department_id%TYPE;
empno employees.employee_id%TYPE;
sal employees.salary%TYPE;
avg_sal employees.salary%TYPE;

BEGIN
empno:=205;
SELECT salary,department_id INTO sal,dept_id
FROM employees WHERE employee_id= empno;
SELECT avg(salary) INTO avg_sal FROM employees
WHERE department_id=dept_id;
IF sal > avg_sal THEN
RETURN TRUE;

ELSE
RETURN FALSE;

END IF;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RETURN NULL;

END;
/

Copyright © 2009, Oracle. All rights reserved.9 - 11

Invoking the Function

SET SERVEROUTPUT ON

BEGIN

IF (check_sal IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal) THEN

DBMS_OUTPUT.PUT_LINE('Salary > average');

ELSE

DBMS_OUTPUT.PUT_LINE('Salary < average');

END IF;

END;

/

Copyright © 2009, Oracle. All rights reserved.9 - 12

Passing a Parameter to the Function

DROP FUNCTION check_sal;

CREATE FUNCTION check_sal(empno employees.employee_id%TYPE)

RETURN Boolean IS

dept_id employees.department_id%TYPE;

sal employees.salary%TYPE;

avg_sal employees.salary%TYPE;

BEGIN

SELECT salary,department_id INTO sal,dept_id

FROM employees WHERE employee_id=empno;

SELECT avg(salary) INTO avg_sal FROM employees

WHERE department_id=dept_id;

IF sal > avg_sal THEN

RETURN TRUE;

ELSE

RETURN FALSE;

END IF;

EXCEPTION ...

...

Copyright © 2009, Oracle. All rights reserved.9 - 13

Invoking the Function with a Parameter

BEGIN

DBMS_OUTPUT.PUT_LINE('Checking for employee with id 205');

IF (check_sal(205) IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal(205)) THEN

DBMS_OUTPUT.PUT_LINE('Salary > average');

ELSE

DBMS_OUTPUT.PUT_LINE('Salary < average');

END IF;

DBMS_OUTPUT.PUT_LINE('Checking for employee with id 70');

IF (check_sal(70) IS NULL) THEN

DBMS_OUTPUT.PUT_LINE('The function returned

NULL due to exception');

ELSIF (check_sal(70)) THEN

...

END IF;

END;

/

PUT THE SCREENSHOT OF OUTPUT HERE

Copyright © 2009, Oracle. All rights reserved.9 - 14

Summary

In this lesson, you should have learned how to:
• Create a simple procedure
• Invoke the procedure from an anonymous block
• Create a simple function
• Create a simple function that accepts parameters
• Invoke the function from an anonymous block

Copyright © 2009, Oracle. All rights reserved.9 - 15

Practice 9: Overview

This practice covers the following topics:
• Converting an existing anonymous block to a procedure
• Modifying the procedure to accept a parameter
• Writing an anonymous block to invoke the procedure

Copyright © 2009, Oracle. All rights reserved.

REF Cursors

Copyright © 2009, Oracle. All rights reserved.C - 2

Cursor Variables

• Cursor variables are like C or Pascal pointers, which hold
the memory location (address) of an item instead of the
item itself.

• In PL/SQL, a pointer is declared as REF X, where REF is
short for REFERENCE and X stands for a class of objects.

• A cursor variable has the data type REF CURSOR.
• A cursor is static, but a cursor variable is dynamic.
• Cursor variables give you more flexibility.

Copyright © 2009, Oracle. All rights reserved.C - 3

Why Use Cursor Variables?

• You can use cursor variables to pass query result sets
between PL/SQL stored subprograms and various clients.

• PL/SQL can share a pointer to the query work area in
which the result set is stored.

• You can pass the value of a cursor variable freely from one
scope to another.

• You can reduce network traffic by having a PL/SQL block
open (or close) several host cursor variables in a single
round trip.

Copyright © 2009, Oracle. All rights reserved.C - 4

Defining REF CURSOR Types

• Define a REF CURSOR type:

• Declare a cursor variable of that type:

• Example:

Define a REF CURSOR type
TYPE ref_type_name IS REF CURSOR [RETURN
return_type];

ref_cv ref_type_name;

DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN
departments%ROWTYPE;
dept_cv DeptCurTyp;

Copyright © 2009, Oracle. All rights reserved.C - 7

Using the OPEN-FOR, FETCH,
and CLOSE Statements

• The OPEN-FOR statement associates a cursor variable
with a multirow query, executes the query, identifies the
result set, and positions the cursor to point to the first row
of the result set.

• The FETCH statement returns a row from the result set of a
multirow query, assigns the values of select-list items to
corresponding variables or fields in the INTO clause,
increments the count kept by %ROWCOUNT, and advances
the cursor to the next row.

• The CLOSE statement disables a cursor variable.

Copyright © 2009, Oracle. All rights reserved.C - 10

An Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp_cv EmpCurTyp;
emp_rec employees%ROWTYPE;
sql_stmt VARCHAR2(200);
my_job VARCHAR2(10) := 'ST_CLERK';

BEGIN
sql_stmt := 'SELECT * FROM employees

WHERE job_id = :j';
OPEN emp_cv FOR sql_stmt USING my_job;
LOOP

FETCH emp_cv INTO emp_rec;
EXIT WHEN emp_cv%NOTFOUND;
-- process record

END LOOP;
CLOSE emp_cv;

END;
/

Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper

Copyright © 2009, Oracle. All rights reserved.D - 2

Oracle JDeveloper 10g

Copyright © 2009, Oracle. All rights reserved.D - 3

Connection Navigator

Copyright © 2009, Oracle. All rights reserved.D - 4

Application Navigator

Copyright © 2009, Oracle. All rights reserved.D - 5

Structure Window

Copyright © 2009, Oracle. All rights reserved.D - 6

Editor Window

Copyright © 2009, Oracle. All rights reserved.D - 7

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following
steps:
1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

1 2 3

Copyright © 2009, Oracle. All rights reserved.D - 8

Creating Program Units

Skeleton of the function

Copyright © 2009, Oracle. All rights reserved.D - 9

Compiling

Compilation with errors

Compilation without errors

Copyright © 2009, Oracle. All rights reserved.D - 10

Running a Program Unit

Copyright © 2009, Oracle. All rights reserved.D - 11

Dropping a Program Unit

Copyright © 2009, Oracle. All rights reserved.D - 12

Debugging PL/SQL Programs

• JDeveloper support two types of debugging:
– Local
– Remote

• You need the following privileges to perform PL/SQL
debugging:
– DEBUG ANY PROCEDURE

– DEBUG CONNECT SESSION

Copyright © 2009, Oracle. All rights reserved.D - 13

Debugging PL/SQL Programs

Copyright © 2009, Oracle. All rights reserved.D - 15

Setting Breakpoints

Copyright © 2009, Oracle. All rights reserved.D - 16

Stepping Through Code

Debug

Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer

Copyright © 2009, Oracle. All rights reserved.E - 2

Objectives

After completing this appendix, you should be able to do the
following:
• List the key features of Oracle SQL Developer
• Install Oracle SQL Developer
• Identify menu items of Oracle SQL Developer
• Create a database connection
• Manage database objects
• Use SQL Worksheet
• Execute SQL statements and SQL scripts
• Create and save reports

Copyright © 2009, Oracle. All rights reserved.E - 3

What Is Oracle SQL Developer?

• Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database schema by
using standard Oracle database authentication.

Copyright © 2009, Oracle. All rights reserved.E - 4

Key Features

• Was developed in Java
• Supports Windows, Linux, and Mac OS X platforms
• Uses the JDBC Thin driver for default connectivity
• Does not require an installer
• Connects to any Oracle Database version 9.2.0.1 and later
• Is bundled with JRE 1.5

Copyright © 2009, Oracle. All rights reserved.E - 5

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

Copyright © 2009, Oracle. All rights reserved.E - 6

Menus for SQL Developer

1

2

3

4

5

76

Copyright © 2009, Oracle. All rights reserved.E - 7

Creating a Database Connection

• You must have at least one database connection to use
SQL Developer.

• You can create and test connections:
– For multiple databases
– For multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an XML file.
• Each additional database connection created is listed in

the connections navigator hierarchy.

Copyright © 2009, Oracle. All rights reserved.E - 8

Creating a Database Connection

Copyright © 2009, Oracle. All rights reserved.E - 9

Browsing Database Objects

Use the Database Navigator to:
• Browse through many objects in a database schema
• Do a quick review of the definitions of objects

Copyright © 2009, Oracle. All rights reserved.E - 10

Creating a Schema Object

• SQL Developer supports the
creation of any schema object by:
– Executing a SQL statement in SQL

Worksheet
– Using the context menu

• You can edit the objects by using an
edit dialog box or one of the many
context-sensitive menus.

• You can view the DDL for
adjustments such as creating a new
object or editing an existing schema
object.

Copyright © 2009, Oracle. All rights reserved.E - 11

Creating a New Table: Example

Copyright © 2009, Oracle. All rights reserved.E - 12

Using SQL Worksheet

• Use SQL Worksheet to enter and execute SQL, PL/SQL,
and SQL*Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Copyright © 2009, Oracle. All rights reserved.E - 13

Using SQL Worksheet

1

2

3

4

5

6

7
8

Copyright © 2009, Oracle. All rights reserved.E - 14

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

Copyright © 2009, Oracle. All rights reserved.E - 15

Viewing the Execution Plan

Copyright © 2009, Oracle. All rights reserved.E - 16

Formatting the SQL Code

Before
Formatting

After
Formatting

Copyright © 2009, Oracle. All rights reserved.E - 17

Using Snippets

Snippets are code fragments that may be just syntax or
examples.

Copyright © 2009, Oracle. All rights reserved.E - 18

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Copyright © 2009, Oracle. All rights reserved.E - 19

Creating an Anonymous Block

Create an anonymous block and display the output of
DBMS_OUTPUT package statements.

Copyright © 2009, Oracle. All rights reserved.E - 20

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units:

Copyright © 2009, Oracle. All rights reserved.E - 21

Creating a PL/SQL Procedure

1
2

Copyright © 2009, Oracle. All rights reserved.E - 22

Using SQL*Plus

• SQL Worksheet does not support all SQL*Plus statements.
• SQL*Plus statements that are not supported by SQL

Worksheet are:
– append

– archive

– attribute

– break

– change

– clear

Copyright © 2009, Oracle. All rights reserved.E - 23

Database Reporting

• SQL Developer provides you with a number of predefined
reports about your database and objects.

• The Reports are organized into categories.
• You can create your own customized reports too.

Copyright © 2009, Oracle. All rights reserved.E - 24

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Copyright © 2009, Oracle. All rights reserved.E - 25

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:
• Browse, create, and edit database objects
• Execute SQL statements and scripts in SQL Worksheet
• Create and save custom reports

	Cover Page
	Introduction
	Lesson 01: Introduction to PL/SQL
	Lesson 02: Declaring PL/SQL Variables
	Lesson 03: Writing Executable Statements
	Lesson 04: Interacting with the Oracle Server
	Lesson 05: Writing Control Structures
	Lesson 06: Working with Composite Data Types
	Lesson 07: Using Explicit Cursors
	Lesson 08: Handling Exceptions
	Lesson 09: Creating Stored Procedures and Functions
	Appendix C: REF Cursors
	Appendix D: Oracle JDeveloper
	Appendix E: Using SQL Developer

