
Copyright © 2009, Oracle. All rights reserved.

Design Considerations for PL/SQL Code

Copyright © 2009, Oracle. All rights reserved.7 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Use package specifications to create standard constants

and exceptions
• Write and call local subprograms
• Set the AUTHID directive to control the run-time privileges

of a subprogram
• Execute subprograms to perform autonomous transactions
• Use bulk binding and the RETURNING clause with DML
• Pass parameters by reference using a NOCOPY hint
• Use the PARALLEL ENABLE hint for optimization

Copyright © 2009, Oracle. All rights reserved.7 - 3

Standardizing Constants and Exceptions

Constants and exceptions are typically implemented using a
bodiless package (that is, in a package specification).
• Standardizing helps to:

– Develop programs that are consistent
– Promote a higher degree of code reuse
– Ease code maintenance
– Implement company standards across entire applications

• Start with standardization of:
– Exception names
– Constant definitions

Copyright © 2009, Oracle. All rights reserved.7 - 4

Standardizing Exceptions

Create a standardized error-handling package that includes all
named and programmer-defined exceptions to be used in the
application.

CREATE OR REPLACE PACKAGE error_pkg IS

fk_err EXCEPTION;

seq_nbr_err EXCEPTION;

PRAGMA EXCEPTION_INIT (fk_err, -2292);

PRAGMA EXCEPTION_INIT (seq_nbr_err, -2277);

...

END error_pkg;

/

Copyright © 2009, Oracle. All rights reserved.7 - 5

Standardizing Exception Handling

Consider writing a subprogram for common exception handling
to:
• Display errors based on SQLCODE and SQLERRM values for

exceptions
• Track run-time errors easily by using parameters in your

code to identify:
– The procedure in which the error occurred
– The location (line number) of the error
– RAISE_APPLICATION_ERROR using stack trace

capabilities, with the third argument set to TRUE

Copyright © 2009, Oracle. All rights reserved.7 - 6

Standardizing Constants

For programs that use local variables whose values should not
change:
• Convert the variables to constants to reduce maintenance

and debugging
• Create one central package specification and place all

constants in it

CREATE OR REPLACE PACKAGE constant_pkg IS

c_order_received CONSTANT VARCHAR(2) := 'OR';

c_order_shipped CONSTANT VARCHAR(2) := 'OS';

c_min_sal CONSTANT NUMBER(3) := 900;

...

END constant_pkg;

Copyright © 2009, Oracle. All rights reserved.7 - 7

Local Subprograms

• A local subprogram is a PROCEDURE or FUNCTION
defined in the declarative section.

• The local subprogram must be defined at the end of the
declarative section.

CREATE PROCEDURE employee_sal(id NUMBER) IS
emp employees%ROWTYPE;
FUNCTION tax(salary VARCHAR2) RETURN NUMBER IS
BEGIN
RETURN salary * 0.825;

END tax;
BEGIN

SELECT * INTO emp
FROM EMPLOYEES WHERE employee_id = id;
DBMS_OUTPUT.PUT_LINE('Tax: '||tax(emp.salary));

END;

Copyright © 2009, Oracle. All rights reserved.7 - 8

Definer’s Rights Versus Invoker’s Rights

Definer’s rights:
• Used prior to Oracle8i
• Programs execute with the

privileges of the creating
user.

• User does not require
privileges on underlying
objects that the procedure
accesses. User requires
privilege only to execute a
procedure.

Invoker’s rights:
• Introduced in Oracle8i
• Programs execute with the

privileges of the calling user.
• User requires privileges on

the underlying objects that
the procedure accesses.

Copyright © 2009, Oracle. All rights reserved.7 - 9

Specifying Invoker’s Rights

Set AUTHID to CURRENT_USER:

When used with stand-alone functions, procedures, or
packages:
• Names used in queries, DML, Native Dynamic SQL, and

DBMS_SQL package are resolved in the invoker’s schema
• Calls to other packages, functions, and procedures are

resolved in the definer’s schema

CREATE OR REPLACE PROCEDURE add_dept(
id NUMBER, name VARCHAR2) AUTHID CURRENT_USER IS

BEGIN
INSERT INTO departments
VALUES (id,name,NULL,NULL);

END;

Copyright © 2009, Oracle. All rights reserved.7 - 10

PROCEDURE proc1 IS
emp_id NUMBER;

BEGIN
emp_id := 1234;
COMMIT;
INSERT ...
proc2;
DELETE ...
COMMIT;

END proc1;

PROCEDURE proc2 IS

PRAGMA

AUTONOMOUS_TRANSACTION;

dept_id NUMBER := 90;

BEGIN

UPDATE ...

INSERT ...

COMMIT; -- Required

END proc2;

Autonomous Transactions

• Are independent transactions started by another main
transaction.

• Are specified with PRAGMA AUTONOMOUS_TRANSACTION

1

7

2
3
4

5

6

Copyright © 2009, Oracle. All rights reserved.7 - 11

Features of Autonomous Transactions

Autonomous transactions:
• Are independent of the main transaction
• Suspend the calling transaction until it is completed
• Are not nested transactions
• Do not roll back if the main transaction rolls back
• Enable the changes to become visible to other

transactions upon a commit
• Are demarcated (started and ended) by individual

subprograms and not by nested or anonymous PL/SQL
blocks

Copyright © 2009, Oracle. All rights reserved.7 - 12

Using Autonomous Transactions

Example:

PROCEDURE bank_trans(cardnbr NUMBER,loc NUMBER) IS
BEGIN
log_usage (cardnbr, loc);
INSERT INTO txn VALUES (9001, 1000,...);

END bank_trans;

PROCEDURE log_usage (card_id NUMBER, loc NUMBER)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO usage
VALUES (card_id, loc);
COMMIT;

END log_usage;

Copyright © 2009, Oracle. All rights reserved.7 - 13

CREATE PROCEDURE update_salary(emp_id NUMBER) IS
name employees.last_name%TYPE;
new_sal employees.salary%TYPE;

BEGIN
UPDATE employees
SET salary = salary * 1.1

WHERE employee_id = emp_id
RETURNING last_name, salary INTO name, new_sal;

END update_salary;
/

RETURNING Clause

The RETURNING clause:
• Improves performance by returning column values with

INSERT, UPDATE, and DELETE statements
• Eliminates the need for a SELECT statement

Copyright © 2009, Oracle. All rights reserved.7 - 14

SQL engine

Bulk Binding

Binds whole arrays of values in a single operation, rather than
using a loop to perform a FETCH, INSERT, UPDATE, and
DELETE operation multiple times

PL/SQL run-time engine

SQL
statement
executor

Procedural
statement
executor

PL/SQL block

FORALL j IN 1..1000
INSERT (id,

dates)
VALUES (ids(j),

dates(j));
...

Copyright © 2009, Oracle. All rights reserved.7 - 15

Using Bulk Binding

Keywords to support bulk binding:
• The FORALL keyword instructs the PL/SQL engine to bulk

bind input collections before sending them to the SQL
engine.

• The BULK COLLECT keyword instructs the SQL engine to
bulk bind output collections before returning them to the
PL/SQL engine.

FORALL index IN lower_bound .. upper_bound
[SAVE EXCEPTIONS]
sql_statement;

... BULK COLLECT INTO
collection_name[,collection_name] ...

Copyright © 2009, Oracle. All rights reserved.7 - 16

Bulk Binding FORALL: Example

CREATE PROCEDURE raise_salary(percent NUMBER) IS
TYPE numlist IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

id numlist;
BEGIN
id(1) := 100; id(2) := 102;
id(3) := 104; id(4) := 110;
-- bulk-bind the PL/SQL table
FORALL i IN id.FIRST .. id.LAST
UPDATE employees
SET salary = (1 + percent/100) * salary
WHERE manager_id = id(i);

END;
/

EXECUTE raise_salary(10)

Copyright © 2009, Oracle. All rights reserved.7 - 18

CREATE PROCEDURE get_departments(loc NUMBER) IS
TYPE dept_tabtype IS
TABLE OF departments%ROWTYPE;

depts dept_tabtype;
BEGIN
SELECT * BULK COLLECT INTO depts
FROM departments
WHERE location_id = loc;
FOR I IN 1 .. depts.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(depts(i).department_id
||' '||depts(i).department_name);

END LOOP;
END;

Using BULK COLLECT INTO with Queries

The SELECT statement has been enhanced to support the
BULK COLLECT INTO syntax.
Example:

Copyright © 2009, Oracle. All rights reserved.7 - 19

Using BULK COLLECT INTO with Cursors

The FETCH statement has been enhanced to support the BULK
COLLECT INTO syntax.
Example:
CREATE PROCEDURE get_departments(loc NUMBER) IS
CURSOR dept_csr IS SELECT * FROM departments

WHERE location_id = loc;
TYPE dept_tabtype IS TABLE OF dept_csr%ROWTYPE;
depts dept_tabtype;

BEGIN
OPEN dept_csr;
FETCH dept_csr BULK COLLECT INTO depts;
CLOSE dept_csr;
FOR I IN 1 .. depts.COUNT LOOP

DBMS_OUTPUT.PUT_LINE(depts(i).department_id
||' '||depts(i).department_name);

END LOOP;
END;

Copyright © 2009, Oracle. All rights reserved.7 - 20

CREATE PROCEDURE raise_salary(rate NUMBER) IS
TYPE emplist IS TABLE OF NUMBER;
TYPE numlist IS TABLE OF employees.salary%TYPE
INDEX BY BINARY_INTEGER;

emp_ids emplist := emplist(100,101,102,104);
new_sals numlist;

BEGIN
FORALL i IN emp_ids.FIRST .. emp_ids.LAST
UPDATE employees
SET commission_pct = rate * salary

WHERE employee_id = emp_ids(i)
RETURNING salary BULK COLLECT INTO new_sals;

FOR i IN 1 .. new_sals.COUNT LOOP ...
END;

Using BULK COLLECT INTO
with a RETURNING Clause

Example:

Copyright © 2009, Oracle. All rights reserved.7 - 21

Using the NOCOPY Hint

The NOCOPY hint:
• Is a request to the PL/SQL compiler to pass OUT and IN

OUT parameters by reference rather than by value
• Enhances performance by reducing overhead when

passing parameters

DECLARE
TYPE emptabtype IS TABLE OF employees%ROWTYPE;
emp_tab emptabtype;
PROCEDURE populate(tab IN OUT NOCOPY emptabtype)
IS BEGIN ... END;

BEGIN
populate(emp_tab);

END;
/

Copyright © 2009, Oracle. All rights reserved.7 - 22

Effects of the NOCOPY Hint

• If the subprogram exits with an exception that is not
handled:
– You cannot rely on the values of the actual parameters

passed to a NOCOPY parameter
– Any incomplete modifications are not “rolled back”

• The remote procedure call (RPC) protocol enables you to
pass parameters only by value.

Copyright © 2009, Oracle. All rights reserved.7 - 23

NOCOPY Hint Can Be Ignored

The NOCOPY hint has no effect if:
• The actual parameter:

– Is an element of an index-by table
– Is constrained (for example, by scale or NOT NULL)
– And formal parameter are records, where one or both

records were declared by using %ROWTYPE or %TYPE, and
constraints on corresponding fields in the records differ

– Requires an implicit data type conversion
• The subprogram is involved in an external or remote

procedure call

Copyright © 2009, Oracle. All rights reserved.7 - 24

PARALLEL_ENABLE Hint

The PARALLEL_ENABLE hint:
• Can be used in functions as an optimization hint

• Indicates that a function can be used in a parallelized
query or parallelized DML statement

CREATE OR REPLACE FUNCTION f2 (p1 NUMBER)
RETURN NUMBER PARALLEL_ENABLE IS

BEGIN
RETURN p1 * 2;

END f2;

Copyright © 2009, Oracle. All rights reserved.7 - 25

Summary

In this lesson, you should have learned how to:
• Create standardized constants and exceptions using

packages
• Develop and invoke local subprograms
• Control the run-time privileges of a subprogram by setting

the AUTHID directive
• Execute autonomous transactions
• Use the RETURNING clause with DML statements, and

bulk binding collections with the FORALL and BULK
COLLECT INTO clauses

• Pass parameters by reference using a NOCOPY hint
• Enable optimization with PARALLEL ENABLE hints

Copyright © 2009, Oracle. All rights reserved.7 - 26

Practice 7: Overview

This practice covers the following topics:
• Creating a package that uses bulk fetch operations
• Creating a local subprogram to perform an autonomous

transaction to audit a business operation
• Testing AUTHID functionality

