
Copyright © 2009, Oracle. All rights reserved.

Creating Stored Functions

Copyright © 2009, Oracle. All rights reserved.2 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Describe the uses of functions
• Create stored functions
• Invoke a function
• Remove a function
• Differentiate between a procedure and a function

Copyright © 2009, Oracle. All rights reserved.2 - 3

Overview of Stored Functions

A function:
• Is a named PL/SQL block that returns a value
• Can be stored in the database as a schema object for

repeated execution
• Is called as part of an expression or used to provide a

parameter value

Copyright © 2009, Oracle. All rights reserved.2 - 4

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

Syntax for Creating Functions

The PL/SQL block must have at least one RETURN statement.

PL/SQL block

Copyright © 2009, Oracle. All rights reserved.2 - 5

Developing Functions

Create or
edit function

Invoke function

Compiler
warnings or

errors?
NO

YES
Use SHOW ERRORS

command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors or warnings
in SQL Developer

View compiler
warnings or

errors

Copyright © 2009, Oracle. All rights reserved.2 - 6

Stored Function: Example

• Create the function:

• Invoke the function as an expression or a parameter value:

CREATE OR REPLACE FUNCTION get_sal
(id employees.employee_id%TYPE) RETURN NUMBER IS
sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO sal
FROM employees
WHERE employee_id = id;
RETURN sal;

END get_sal;
/

EXECUTE dbms_output.put_line(get_sal(100))

Copyright © 2009, Oracle. All rights reserved.2 - 7

Ways to Execute Functions

• Invoke as part of a PL/SQL expression, using a:
– Host variable to obtain the result:

– Local variable to obtain the result:

• Use as a parameter to another subprogram:

• Use in a SQL statement (subject to restrictions):

EXECUTE dbms_output.put_line(get_sal(100))

SELECT job_id, get_sal(employee_id) FROM employees;

VARIABLE salary NUMBER
EXECUTE :salary := get_sal(100)

DECLARE sal employees.salary%type;
BEGIN
sal := get_sal(100); ...

END;

Copyright © 2009, Oracle. All rights reserved.2 - 8

Advantages of User-Defined Functions
in SQL Statements

• Can extend SQL where activities are too complex, too
awkward, or unavailable with SQL

• Can increase efficiency when used in the WHERE clause to
filter data, as opposed to filtering the data in the application

• Can manipulate data values

Copyright © 2009, Oracle. All rights reserved.2 - 9

Function in SQL Expressions: Example

CREATE OR REPLACE FUNCTION tax(value IN NUMBER)
RETURN NUMBER IS
BEGIN

RETURN (value * 0.08);
END tax;
/
SELECT employee_id, last_name, salary, tax(salary)
FROM employees
WHERE department_id = 100;

Copyright © 2009, Oracle. All rights reserved.2 - 10

Locations to Call User-Defined Functions

User-defined functions act like built-in single-row functions and
can be used in:
• The SELECT list or clause of a query
• Conditional expressions of the WHERE and HAVING

clauses
• The CONNECT BY, START WITH, ORDER BY, and GROUP

BY clauses of a query
• The VALUES clause of the INSERT statement
• The SET clause of the UPDATE statement

Copyright © 2009, Oracle. All rights reserved.2 - 11

Restrictions on Calling Functions
from SQL Expressions

• User-defined functions that are callable from SQL
expressions must:
– Be stored in the database
– Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types
– Return valid SQL data types, not PL/SQL-specific types

• When calling functions in SQL statements:
– Parameters must be specified with positional notation
– You must own the function or have the EXECUTE privilege

Copyright © 2009, Oracle. All rights reserved.2 - 12

Controlling Side Effects When Calling Functions
from SQL Expressions

Functions called from:
• A SELECT statement cannot contain DML statements
• An UPDATE or DELETE statement on a table T cannot

query or contain DML on the same table T
• SQL statements cannot end transactions (that is, cannot

execute COMMIT or ROLLBACK operations)
Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

Copyright © 2009, Oracle. All rights reserved.2 - 13

Restrictions on Calling Functions from SQL:
Example

CREATE OR REPLACE FUNCTION dml_call_sql(sal NUMBER)
RETURN NUMBER IS

BEGIN
INSERT INTO employees(employee_id, last_name,

email, hire_date, job_id, salary)
VALUES(1, 'Frost', 'jfrost@company.com',

SYSDATE, 'SA_MAN', sal);
RETURN (sal + 100);

END;

UPDATE employees
SET salary = dml_call_sql(2000)

WHERE employee_id = 170;

Copyright © 2009, Oracle. All rights reserved.2 - 14

Removing Functions

Removing a stored function:
• You can drop a stored function by using the following

syntax:

Example:

• All the privileges that are granted on a function are
revoked when the function is dropped.

• The CREATE OR REPLACE syntax is equivalent to dropping
a function and re-creating it. Privileges granted on the
function remain the same when this syntax is used.

DROP FUNCTION function_name

DROP FUNCTION get_sal;

Copyright © 2009, Oracle. All rights reserved.2 - 15

Viewing Functions in the Data Dictionary

Information for PL/SQL functions is stored in the following
Oracle data dictionary views:
• You can view source code in the USER_SOURCE table for

subprograms that you own, or the ALL_SOURCE table for
functions owned by others who have granted you the
EXECUTE privilege.

• You can view the names of functions by using
USER_OBJECTS.

SELECT text
FROM user_source
WHERE type = 'FUNCTION'
ORDER BY line;

SELECT object_name
FROM user_objects
WHERE object_type = 'FUNCTION';

Copyright © 2009, Oracle. All rights reserved.2 - 16

Procedures Versus Functions

Must return a single valueCan return values (if any) in
output parameters

Can contain a RETURN
statement without a value

Do not contain the RETURN
clause in the header

Execute as a PL/SQL statement

Procedures

Invoke as part of an expression

Must contain at least one
RETURN statement

Must contain a RETURN
clause in the header

Functions

Copyright © 2009, Oracle. All rights reserved.2 - 17

Summary

In this lesson, you should have learned how to:
• Write a PL/SQL function to compute and return a value by

using the CREATE FUNCTION SQL statement
• Invoke a function as part of a PL/SQL expression
• Use stored PL/SQL functions in SQL statements
• Remove a function from the database by using the DROP

FUNCTION SQL statement

Copyright © 2009, Oracle. All rights reserved.2 - 18

Practice 2: Overview

This practice covers the following topics:
• Creating stored functions:

– To query a database table and return specific values
– To be used in a SQL statement
– To insert a new row, with specified parameter values, into a

database table
– Using default parameter values

• Invoking a stored function from a SQL statement
• Invoking a stored function from a stored procedure

