
Copyright © 2009, Oracle. All rights reserved.

Applications for Triggers

Copyright © 2009, Oracle. All rights reserved.11 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Create additional database triggers
• Explain the rules governing triggers
• Implement triggers

Copyright © 2009, Oracle. All rights reserved.11 - 3

Creating Database Triggers

• Triggering a user event:
– CREATE, ALTER, or DROP
– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database
– A specific error (or any error) being raised

Copyright © 2009, Oracle. All rights reserved.11 - 4

Creating Triggers on DDL Statements

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
Timing
[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Copyright © 2009, Oracle. All rights reserved.11 - 5

Creating Triggers on System Events

Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name
timing
[database_event1 [OR database_event2 OR ...]]
ON {DATABASE|SCHEMA}
trigger_body

Copyright © 2009, Oracle. All rights reserved.11 - 6

LOGON and LOGOFF Triggers: Example

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging on');
END;
/

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging off');
END;
/

Copyright © 2009, Oracle. All rights reserved.11 - 7

CALL Statements

Note: There is no semicolon at the end of the CALL statement.

CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution
/

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name
[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure_name
/

Copyright © 2009, Oracle. All rights reserved.11 - 8

Trigger event

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

EMPLOYEES table Failure

Triggered table or
mutating table

BEFORE UPDATE row

CHECK_SALARY
trigger

Reading Data from a Mutating Table

…
… 3400

Copyright © 2009, Oracle. All rights reserved.11 - 9

Mutating Table: Example

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id
ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')

DECLARE
minsalary employees.salary%TYPE;
maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO minsalary, maxsalary
FROM employees
WHERE job_id = :NEW.job_id;
IF :NEW.salary < minsalary OR

:NEW.salary > maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.11 - 10

Mutating Table: Example

UPDATE employees

SET salary = 3400

WHERE last_name = 'Stiles';

Copyright © 2009, Oracle. All rights reserved.11 - 11

Benefits of Database Triggers

• Improved data security provides enhanced and complex:
– Security checks
– Auditing

• Improved data integrity:
– Enforces dynamic data integrity constraints
– Enforces complex referential integrity constraints
– Ensures that related operations are performed together

implicitly

Copyright © 2009, Oracle. All rights reserved.11 - 12

Managing Triggers

The following system privileges are required to manage
triggers:
• The CREATE/ALTER/DROP (ANY) TRIGGER privilege

that enables you to create a trigger in any schema
• The ADMINISTER DATABASE TRIGGER privilege that

enables you to create a trigger on DATABASE
• The EXECUTE privilege (if your trigger refers to any objects

that are not in your schema)
Note: Statements in the trigger body use the privileges of the
trigger owner, not the privileges of the user executing the
operation that fires the trigger.

Copyright © 2009, Oracle. All rights reserved.11 - 13

Business Application Scenarios for
Implementing Triggers

You can use triggers for:
• Security
• Auditing
• Data integrity
• Referential integrity
• Table replication
• Computing derived data automatically
• Event logging

Note: Appendix C covers each of these examples in more
detail.

Copyright © 2009, Oracle. All rights reserved.11 - 14

Viewing Trigger Information

You can view the following trigger information:
• USER_OBJECTS data dictionary view: Object information
• USER_TRIGGERS data dictionary view: Text of the trigger
• USER_ERRORS data dictionary view: PL/SQL syntax errors

(compilation errors) of the trigger

Copyright © 2009, Oracle. All rights reserved.11 - 15

Using USER_TRIGGERS

Abridged column list*

The when_clause usedWHEN_CLAUSE

Name used for :OLD and :NEWREFERENCING_NAMES

The DML operation firing the triggerTRIGGERING_EVENT

The type is BEFORE, AFTER, INSTEAD OFTRIGGER_TYPE

Name of the triggerTRIGGER_NAME

TRIGGER_BODY

STATUS

TABLE_NAME

Column

Name of the database table

The action to take

The status of the trigger

Column Description

Copyright © 2009, Oracle. All rights reserved.11 - 16

SELECT trigger_name, trigger_type, triggering_event,
table_name, referencing_names,
status, trigger_body

FROM user_triggers
WHERE trigger_name = 'RESTRICT_SALARY';

Listing the Code of Triggers

Copyright © 2009, Oracle. All rights reserved.11 - 17

Summary

In this lesson, you should have learned how to:
• Use advanced database triggers
• List mutating and constraining rules for triggers
• Describe real-world applications of triggers
• Manage triggers
• View trigger information

Copyright © 2009, Oracle. All rights reserved.11 - 18

Practice 11: Overview

This practice covers the following topics:
• Creating advanced triggers to manage data integrity rules
• Creating triggers that cause a mutating table exception
• Creating triggers that use package state to solve the

mutating table problem

