Using More Package Concepts

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Overload package procedures and functions
 Use forward declarations
« Create an initialization block in a package body

 Manage persistent package data states for the life of a
session

 Use PL/SQL tables and records in packages

 Wrap source code stored in the data dictionary so that it is
not readable

ORACLE

4-2 Copyright © 2009, Oracle. All rights reserved.

Overloading Subprograms

The overloading feature in PL/SQL:

 Enables you to create two or more subprograms with the
same name

 Requires that the subprogram’s formal parameters differ in
number, order, or data type family

 Enables you to build flexible ways for invoking
subprograms with different data

* Provides a way to extend functionality without loss of
existing code

Note: Overloading can be done with local subprograms,
package subprograms, and type methods, but not with stand-
alone subprograms.

ORACLE

4-3 Copyright © 2009, Oracle. All rights reserved.

Overloading: Example

CREATE OR REPLACE PACKAGE dept pkg IS

PROCEDURE add=department(deptno NUMBER,

name VARCHAR2 := 'unknown', loc NUMBER := 1700) ;

PROCEDURE add_departmentk

name VARCHAR2 := 'unknown', loc NUMBER := 1700);
END dept pkg:;

/

ORACLE

4-5 Copyright © 2009, Oracle. All rights reserved.

Overloading: Example

CREATE OR REPLACE PACKAGE BODY dept pkg IS
PROCEDUREladd_department|(deptno NUMBER,

name VARCHAR2:='unknown', loc NUMBER:=1700) IS
BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (deptno, name, 1loc);
END add department;

PROCEDUREIadd_department (
name VA :="unknown', loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (departments seq.NEXTVAL, name, loc);
END add department;
END dept pkg;
/

ORACLE

4-6 Copyright © 2009, Oracle. All rights reserved.

Overloading and the sSTANDARD Package

A package named STANDARD defines the PL/SQL
environment and built-in functions.

* Most built-in functions are overloaded. An example is the
TO CHAR function:

FUNCTION TO CHAR (pl DATE) RETURN VARCHAR2;
FUNCTION TO CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO CHAR (pl DATE, P2 VARCHAR2) RETURN
VARCHAR2;

FUNCTION TO CHAR (pl NUMBER, P2 VARCHAR2) RETURN
VARCHAR2;

« A PL/SQL subprogram with the same name as a built-in
subprogram overrides the standard declaration in the local
context, unless you qualify the built-in subprogram with its
package name.

ORACLE

4-7 Copyright © 2009, Oracle. All rights reserved.

Using Forward Declarations

* Block-structured languages (such as PL/SQL) must
declare identifiers before referencing them.

« Example of a referencing problem:

CREATE OR REPLACE PACKAGE BODY forward pkg IS
PROCEDURE award bonus(. . .) IS
BEGIN
calc rating| (. . .); --illegal reference
END ;
PROCEDURE calc rating (. . .) IS
BEGIN
END ;
END forward pkg;
/

ORACLE

4-8 Copyright © 2009, Oracle. All rights reserved.

Using Forward Declarations

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

CREATE OR REPLACE PACKAGE BODY forward pkg IS
PROCEDURE |calc rating| (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award bonus(...) IS

B
icalc_rating (...): -- reference resolved!

END ;

PROCEDURE |calc rating| (...) IS -- implementation
BEGIN

END ;
END forward pkg;

ORACLE

4-9 Copyright © 2009, Oracle. All rights reserved.

Package Initialization Block

The block at the end of the package body executes once and is
used to initialize public and private package variables.

CREATE OR REPLACE PACKAGE taxes IS
tax NUMBER ;
... =-- declare all public procedures/functions
END taxes;
/
CREATE OR REPLACE PACKAGE BODY taxes IS
-- declare all private variables
-- define public/private procedures/functions

BEGIN

SELECT rate value INTO tax
FROM tax rates
WHERE rate name = 'TAX';
END taxes;
/

ORACLE

4-10 Copyright © 2009, Oracle. All rights reserved.

Using Package Functions in SQL
and Restrictions

 Package functions can be used in SQL statements.

e Functions called from:

— A query or DML statement must not end the current
transaction, create or roll back to a savepoint, or alter the
system or session

— A query or a parallelized DML statement cannot execute a
DML statement or modify the database

— A DML statement cannot read or modify the table being
changed by that DML statement

Note: A function calling subprograms that break the preceding
restrictions is not allowed.

ORACLE

4-11 Copyright © 2009, Oracle. All rights reserved.

Package Function in SQL: Example

CREATE OR REPLACE PACKAGE taxes pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER;
END taxes pkg;
/
CREATE OR REPLACE PACKAGE BODY taxes pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER IS

rate NUMBER := 0.08;
BEGIN
RETURN (wvalue * rate);
END tax;
END taxes pkg:;

/

SELECT | taxes pkg.tax(salary)|, salary, last name
FROM employees;

ORACLE

4-12 Copyright © 2009, Oracle. All rights reserved.

Persistent State of Packages

The collection of package variables and the values define the
package state. The package state is:

* Initialized when the package is first loaded

« Persistent (by default) for the life of the session
— Stored in the User Global Area (UGA)
— Unique to each session

— Subject to change when package subprograms are called or
public variables are modified

* Not persistent for the session but persistent for the life of a
subprogram call when using PRAGMA

SERIALLY REUSABLE In the package specification

ORACLE

4-13 Copyright © 2009, Oracle. All rights reserved.

Persistent State of Package
Variables: Example

State for: -Scott-

Events MAX
9:00 Scott> EXECUTE 0.10 0.4 - 0.4
comm pkg.reset comm(0.25) 0.25
9:30 Jones> INSERT
INTO employees (
last name,commission pct)
VALUES ('Madonna', 0.8); 0.25 0.4 0.8
9:35 Jones> EXECUTE 0.1
comm pkg.reset comm (0.5) 0.25 0.4 0.5] 0.8
10:00 Scott> EXECUTE
comm pkg.reset comm(0.6)
Err -20210 'Bad Commission' 0.25 0.4 |o.5 0.8
11:00 | Jones> ROLLBACK; 0.25 0.4 0.5 0.4
11:01 | EXIT ... 0.25 0.4 - 0.4
12:00 | EXEC comm pkg.reset comm(0.2) 0.25 0.4 0.2 0.4

ORACLE

4-14 Copyright © 2009, Oracle. All rights reserved.

Persistent State of a Package Cursor

CREATE OR REPLACE PACKAGE BODY curs pkg IS
CURSOR c¢ IS SELECT employee id FROM employees;
PROCEDURE open IS

BEGIN
IF NOT c%ISOPEN THEN OPEN c; END IF;

END open;

FUNCTION next (n NUMBER := 1) RETURN BOOLEAN IS
emp id employees.employee id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP

FETCH c INTO emp id;
EXIT WHEN c%NOTFOUND;
DBMS OUTPUT.PUT LINE('Id: ' || (emp id));
END LOOP;
RETURN c%FOUND;
END next;
PROCEDURE close IS BEGIN
IF c%$ISOPEN THEN CLOSE c¢; END IF;
END close;
END curs pkg;

ORACLE

4 -15 Copyright © 2009, Oracle. All rights reserved.

Executing CURS PKG

SET SERVEROUTPUT ON
EXECUTE curs pkg.open
DECLARE

more BOOLEAN := curs pkg.next(3);
BEGIN

IF NOT more THEN

curs pkg.close;

END IF;

END;

/

anamymaus hlaock completed
anomymous block completed
Id: 100
Id: 101
Id: 102

anomymous block completed
anamymous block completed
Id: 103
Id: 104
Id: 105

ORACLE

4-16 Copyright © 2009, Oracle. All rights reserved.

Using PL/SQL Tables
of Records in Packages

CREATE OR REPLACE PACKAGE emp pkg IS
TYPE emp table type IS TABLE OF employees%ROWIYPE
INDEX BY BINARY INTEGERj;
PROCEDURE get employees (emps OUT emp table type);
END emp pkg;
/

CREATE OR REPLACE PACKAGE BODY emp pkg IS
PROCEDURE get employees (emps OUT emp table type) IS
i BINARY INTEGER := O0;
BEGIN
FOR emp record IN (SELECT * FROM employees)
LOOP
emps (i) := emp record;
i:= 1i+1;
END LOOP;
END get employees;
END emp pkg;
/

ORACLE

4-17 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Wrapper

« The PL/SQL wrapper is a stand-alone utility that hides
application internals by converting PL/SQL source code
Into portable object code.

 Wrapping has the following features:

— Platform independence

— Dynamic loading

— Dynamic binding

— Dependency checking

— Normal importing and exporting when invoked

ORACLE

4-18 Copyright © 2009, Oracle. All rights reserved.

Running the Wrapper

The command-line syntax is:
WRAP INAME=input file name [ONAME=output file name]

« The INAME argument is required.

 The default extension for the input file is . sgl, unless itis
specified with the name.

« The ONAME argument is optional.

 The default extension for output file is .plb, unless
specified with the ONAME argument.

Examples:

WRAP INAME=demo 04 hello.sql
WRAP INAME=demo 04 hello
WRAP INAME=demo 04 hello.sqgl ONAME=demo 04 hello.plb

ORACLE

4-19 Copyright © 2009, Oracle. All rights reserved.

Results of Wrapping

* Original PL/SQL source code in the input file:

CREATE PACKAGE banking IS
min bal := 100;
no funds EXCEPTION;

END banking;
/

 Wrapped code in the output file:

CREATE PACKAGE banking
wrapped

0l2abc463e ...
/

ORACLE

4 -20 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Wrapping

* You must wrap only the package body, not the package
specification.

 The wrapper can detect syntactic errors but cannot detect
semantic errors.

« The output file should not be edited. You maintain the
original source code and wrap again as required.

ORACLE

4-21 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Create and call overloaded subprograms
« Use forward declarations for subprograms
« Write package initialization blocks
 Maintain persistent package state
 Use the PL/SQL wrapper to wrap code

ORACLE

4-22 Copyright © 2009, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
* Using overloaded subprograms
« Creating a package Initialization block
 Using a forward declaration

* Using the WRAP utility to prevent the source code from
being deciphered by humans

ORACLE

4-23 Copyright © 2009, Oracle. All rights reserved.

