Manipulating Large Objects

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the

following:
« Compare and contrast LONG and LOB (large object) data
types

 Create and maintain LOBR data types
« Differentiate between internal and external LOBS
 Use the DBMS LOB PL/SQL package
e Describe the use of temporary LOBS

ORACLE

9-2 Copyright © 2009, Oracle. All rights reserved.

What Is a LOB?

LOBS are used to store large unstructured data such as text,
graphic images, films, and sound waveforms.

l T

“Four score and seven years
ago, our forefathers brought
forth upon this continent, a
new nation, conceived in
LIBERTY, and dedicated to the

proposition that all men are

created equal.” MOVle (BFILE)

Text (CLOB) H Photo (BLOB)

ORACLE

9-3 Copyright © 2009, Oracle. All rights reserved.

Contrasting LONG and LOB Data Types

LONG and LONG RAW

Single LONG column per table Multiple OB columns per table
Upto 2 GB Upto 4 GB

SELECT returns data SELECT returns locator

Data stored in-line Data stored in-line or out-of-line
Sequential access to data Random access to data

ORACLE

9-5 Copyright © 2009, Oracle. All rights reserved.

Anatomy of a LOB

The LLOB column stores a locator to the 1.OBR’s value.

As
<

LOB column LOB value
of a table

LOB locator >

ORACLE

9-6 Copyright © 2009, Oracle. All rights reserved.

Internal LOBS

The L.OB value is stored in the database.

|

“Four score and seven years ago,

our forefathers brought forth upon
this continent, a new nation,

conceived in LIBERTY, and dedicated
to the proposition that all men

are created equal.”

CLOB BLOB

ORACLE

9-7 Copyright © 2009, Oracle. All rights reserved.

Managing Internal LOBS

« To interact fully with LOB, file-like interfaces are provided
In:
— PL/SQL package DBMS LOB
— Oracle Call Interface (OCI)
— Oracle Objects for object linking and embedding (OLE)
— Pro*C/C++ and Pro*COBOL precompilers
— Java Database Connectivity (JDBC)

 The Oracle server provides some support for LOB
management through SQL.

ORACLE

9-8 Copyright © 2009, Oracle. All rights reserved.

What Are BFILES?

The BFILE data type supports an external or file-based large
object as:

e Attributes in an object type
 Column values in a table

@

Movie (BFILE)

ORACLE

9-9 Copyright © 2009, Oracle. All rights reserved.

Securing BFILES

/

¢ AcCcCess
permissions

b «

Movie (BFILE)

ORACLE

9-10 Copyright © 2009, Oracle. All rights reserved.

A New Database Object: DIRECTORY

DIRECTORY

LOB PATH =
' /oracle/lob/"’
Movie (BFILE)
ORACLE

9-11 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Creating
DIRECTORY ODbjects

Do not create DIRECTORY 0bjects on paths with database
files.

« Limit the number of people who are given the following
system privileges:
— CREATE ANY DIRECTORY
— DROP ANY DIRECTORY

« AllDIRECTORY objects are owned by SYS.

* Create directory paths and properly set permissions before
using the DIRECTORY object so that the Oracle server can

read the file.

ORACLE

9-12 Copyright © 2009, Oracle. All rights reserved.

Managing BFILES

The DBA or the system administrator:
1. Creates an OS directory and supplies files
2. Creates a DIRECTORY object in the database

3. Grants the READ privilege on the DIRECTORY object to
appropriate database users

The developer or the user:
4. Creates an Oracle table with a column defined as a BFILE
data type
5. Inserts rows into the table using the BFILENAME function
to populate the BFILE column

6. Writes a PL/SQL subprogram that declares and initializes
a LOB locator, and reads BFILE

ORACLE

9-13 Copyright © 2009, Oracle. All rights reserved.

Preparing to Use BFILES

1. Create an OS directory to store the physical data files:

mkdir /temp/data files

2. Create a DIRECTORY oObject by using the CREATE
DIRECTORY command:

CREATE DIRECTORY data_files
AS '/temp/data files';

3. Grant the READ privilege on the DIRECTORY object to
appropriate users:

GRANT READ ON DIRECTORY data files
TO SCOTT, MANAGER ROLE, PUBLIC;

ORACLE

9-14 Copyright © 2009, Oracle. All rights reserved.

Populating BFILE Columns with SQL

e Use the BFILENAME function to initialize a BFILE column.

The function syntax is:

FUNCTION BFILENAME(directory;alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

« Example:
— Add a BFILE column to a table:
ALTER TABLE employees ADD video BFILE;

— Update the column using the BFILENAME function:

UPDATE employees
SET video = BFILENAME ('DATA FILES', 'King.avi')

WHERE employee id = 100;

ORACLE

9-15 Copyright © 2009, Oracle. All rights reserved.

Populating a BFILE Column with PL/SQL

CREATE PROCEDURE set wvideo(
dir alias VARCHAR2, dept id NUMBER) IS
filename VARCHAR2 (40) ;
file ptr BFILE;
CURSOR emp csr IS

SELECT first name FROM employees

WHERE department id = dept id FOR UPDATE;

BEGIN
FOR rec IN emp csr LOOP
filename := rec.first name || '.gif';

file ptr := BFILENAME (dir alias, filename);

DBMS_LOB.FIJEEFEET?TTZ:E??T71

UPDATE employees SET video = file ptr
WHERE CURRENT OF emp csr;

DBMS OUTPUT.PUT LINE('FILE: ' || filename |
' SIZE: ' || |DBMS LOB.GETLENGTH(file ptr)|);
DBMS LOB.FILECLOSE (file ptr) j
END LOOP; -

END set wvideo;

ORACLE

9-16 Copyright © 2009, Oracle. All rights reserved.

Using DBMS LOB Routines with BFILES

The DBMS LOB.FILEEXISTS function can check whether the
file exists in the OS. The function returns:

e 0O if the file does not exist
« 1 if the file does exist

CREATE FUNCTION get_filesize(file_ptr IN OUT BFILE)
RETURN NUMBER IS
file exists BOOLEAN;

length NUMBER:= -1;
BEGIN
file exists := DBMS LOB.FILEEXISTS(file ptr)=1;

IF file exists THEN
DBMS LOB.FILEOPEN(file ptr);
length := DBMS LOB.GETLENGTH(file ptr);
DBMS LOB.FILECLOSE (file ptr) ;
END IF;
RETURN length;
END;

/
ORACLE

9-17 Copyright © 2009, Oracle. All rights reserved.

Migrating from LONG to LOB

Oracle Database 10g enables the migration of LONG columns to
LOB columns.

« Data migration consists of the procedure to move existing
tables containing LONG columns to use LOBS:

ALTER TABLE [<schema>.] <table name>
MODIFY (<long col name> {CLOB | BLOB | NCLOB})

« Application migration consists of changing existing LONG
applications for using LOBS.

ORACLE

9-18 Copyright © 2009, Oracle. All rights reserved.

Migrating from LONG to LOB

e Implicit conversion: From LONG (LONG RAW) Or a
VARCHAR?2 (RAW) variable to a CLOB (BLOB) variable, and
vice versa

e EXxplicit conversion:
— TO_CLOB () converts LONG, VARCHAR2, and CHAR to

CLOB.
— TO_BLOB () converts LONG RAW and RAW to BLOB.

e Function and procedure parameter passing:
— CLOBS and BLOBS are passed as actual parameters.

— VARCHAR2, LONG, RAW, and LONG RAW are formal

parameters, and vice versa.
 LOB data is acceptable in most of the SQL and PL/SQL

operators and built-in functions.

ORACLE
Copyright © 2009, Oracle. All rights reserved.

9-19

DBMS LOB Package

e Working with LOBs often requires the use of the Oracle-
supplied DBMS LOB package.

 DBMS LOB provides routines to access and manipulate
Internal and external LOBS.

 Oracle Database 10g enables retrieving LOB data directly
using SQL without a special LOB API.

 In PL/SQL, you can define a VARCHAR?2 for a CLLOB and a
RAW for a BLOB.

ORACLE

9-20 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB Package

e Modify LOB values:
APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE

e Read or examine L.OB values:
GETLENGTH, INSTR, READ, SUBSTR

 Specific to BFILES:
FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

ORACLE

9-21 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB Package

e NULL parameters get NULL returns.

o Offsets:
— BLOB, BFILE: Measured in bytes

— CLOB, NCLOB: Measured in characters
 There are no negative values for parameters.

ORACLE

9-22 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB.READ and DBMS LOB.WRITE

PROCEDURE READ (
lobsrc IN BFILE|BLOB|CLOB ,
amount IN OUT BINARY INTEGER,
offset IN INTEGER,
buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (
lobdst IN OUT BLOB |CLOB,
amount IN OUT BINARY INTEGER,
offset IN INTEGER := 1,
buffer IN RAW|VARCHAR2) -- RAW for BLOB

ORACLE

9-23 Copyright © 2009, Oracle. All rights reserved.

Initializing LOB Columns Added to a Table

* Create the table with columns using the L.OB type, or add
the LOB columns using ALTER TABLE.

ALTER TABLE employees
ADD (resume CLOB, picture BLOB) ;

e [|nitialize the column LOB locator value with the DEFAULT
option or DML statements using the:

— EMPTY CLOB () function for a CLOB column
— EMPTY BLOB () function for a BLOB column

CREATE TABLE emp hiredata (
employee id NUMBER(6),

full name VARCHAR2 (45) ,
resume CLOB DEFAULT EMPTY CLOB(),
picture BLOB DEFAULT EMPTY BLOB()) ;

ORACLE

9-24 Copyright © 2009, Oracle. All rights reserved.

Populating LOB Columns

e Insert a row Iinto a table with LOB columns:

INSERT INTO emp hiredata
(employee id, full name, resume, picture)
VALUES (405, 'Marvin Ellis', EMPTY CLOB(), NULL);

* Initialize a LOB using the EMPTY BLOB () function:

UPDATE emp hiredata
SET resume = 'Date of Birth: 8 February 1951',
picture = EMPTY BLOB()
WHERE employee id = 405;

 Update a CLOB column:

UPDATE emp hiredata
SET resume = 'Date of Birth: 1 June 1956"
WHERE employee id = 170;

ORACLE

9-25 Copyright © 2009, Oracle. All rights reserved.

Updating LOB by Using DBMS LOB in PL/SQL

DECLARE
lobloc CLOB; -- serves as the LOB locator
text VARCHAR2 (50) := 'Resigned = 5 June 2000';
amount NUMBER ; -- amount to be written
offset INTEGER; -- where to start writing
BEGIN

SELECT resume INTO lobloc FROM emp hiredata
WHERE employee id = 405 FOR UPDATE;
offset :=[DBMS LOB.GETLENGTH (lobloc)]| + 2;

amount := length (text) ;
DBMS LOB.WRITE (lobloc, amount, offset, text)j|
text := ' Resigned = 30 September 2000°';

SELECT resume INTO lobloc FROM emp hiredata
WHERE employee id = 170 FOR UPDATE;

amount := length (text) ;
DBMS LOB.WRITEAPPEND (lobloc, amount, text);
'EEEETT;

END ;

ORACLE

9-26 Copyright © 2009, Oracle. All rights reserved.

Selecting CLOB Values by Using SQL

SELECT employee id, full name , resume -- CLOB
FROM emp hiredata
WHERE employee id IN (405, 170);

EMPLOYEE_ID | FULL_MAME |RESUME
1 405 Marvin Ellis (CLOEBY Date of Birth: 8 February 1951 Rezigned = 5 June 2000
2 170 Joe Fox (CLOEY Date of Birth: 1 June 1956 Rezigned = 30 September 2000

ORACLE

9-27 Copyright © 2009, Oracle. All rights reserved.

Selecting cLOB Values by Using DBMS LOB

e DBMS LOB.SUBSTR (lob, amount, start pos)
e DBMS LOB.INSTR (lob, pattern)

SELECT DBMS LOB.SUBSTR (resume, 5, 18),
DBMS LOB.INSTR (resume,' = ')

FROM emp hiredata

WHERE employee id IN (170, 405);

DEMS_LDE.SLIEISTR{RESLIME,S,lB} DEMS_LOB IMSTR{RESUME,'=")
1 Febru 40

2 June E1

ORACLE
9-28 Copyright © 2009, Oracle. All rights reserved.

Selecting CcLOB Values in PL/SQL

SET LINESIZE 50 SERVEROUTPUT ON FORMAT WORD WRAP
DECLARE
text VARCHAR2 (4001) ;

BEGIN

SELECT |resume INTO text
FROM emp hiredata

WHERE employee id = 170;

DBMS OUTPUT.PUT LINE('text is: '|| text);
END;

/

anonymous block completed
text is: Date of Birth: 1 June 1956 Eesigned = 30 Septemher 2000

ORACLE

9-29 Copyright © 2009, Oracle. All rights reserved.

Removing LOBS

« Delete a row containing LOBS:

DELETE
FROM emp hiredata
WHERE employee id = 405;

e Disassociate a 1.OB value from a row:

UPDATE emp hiredata
SET resume = EMPTY CLOB(()
WHERE employee id = 170;

ORACLE

9-30 Copyright © 2009, Oracle. All rights reserved.

Temporary LOBS

« Temporary LOBS:
— Provide an interface to support creation of LOBs that act like
local variables
— Can be BLOBS, CLOBS, or NCLOBS

— Are not associated with a specific table

— Are created using the DBMS LOB.CREATETEMPORARY
procedure

— Use DBMS LOB routines
« The lifetime of a temporary LOB Is a session.

« Temporary LOBS are useful for transforming data in
permanent internal LOBS.

ORACLE

9-31 Copyright © 2009, Oracle. All rights reserved.

Creating a Temporary LOB

PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE is templob open (
lob IN OUT BLOB, retval OUT INTEGER) IS
BEGIN
-- create a temporary LOB
DBMS LOB.CREATETEMPORARY (lob, TRUE) ;
-- see 1f the LOB is open: returns 1 if open
retval := DBMS LOB.ISOPEN (lob);
DBMS OUTPUT.PUT LINE (
'The file returned a value...' || retval);
-- free the temporary LOB
DBMS LOB.FREETEMPORARY (lob);
END ;

/

ORACLE

9-32 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

« |dentify four built-in types for large objects: BL.OB, CLOB,
NCLOB, and BFILE

 Describe how LOBs replace LONG and LONG RAW
 Describe two storage options for LOBS:

— Oracle server (internal LOBS)

— External host files (external LOBS)

 Use the DBMS LOB PL/SQL package to provide routines
for LOB management

 Use temporary LOBS in a session

ORACLE

9-33 Copyright © 2009, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
« Creating object types using the CLOB and BLOB data types

 Creating a table with LLOB data types as columns

* Using the DBMS LOB package to populate and interact with
the LOB data

ORACLE

9-34 Copyright © 2009, Oracle. All rights reserved.

