Oracle Database 10g: Develop PL/SQL
Program Units

Electronic Presentation

D17169GC30
Edition 3.0
April 2009

ORACLE

Authors
Salome Clement
Tulika Srivastava
Glenn Stokol

Graphic Designer
Priya Saxena

Editors
Joyce Raftery
Nita Pavitran

Publishers
Jobi Varghese
Sheryl Domingue

Technical Contributors
and Reviewers

Don Bates

Brian Boxx

Dr. Christoph Burandt
Zarko Cedjas

Y anti Chang
Kathryn Cunningham
Brent Dayley

Burt Demchick
Laurent Dereac

Peter Driver

Laura Garza

Nancy Greenberg
Craig Hollister
Thomas Hoogerwerf
Taj-Ul Idam

Yash Jain

Inger Joergensen
Chaitanya Koratamaddi
Eric Lee

Bryn Llewellyn
Malika Marghadi
Hildegard Mayr
Timothy Mcglue
Anita Mukundan
Nagavalli Pataballa
Sunitha Patel
Srinivas Putrevu
Denis Raphaely
Bryan Raberts
Helen Robertson
Grant Spencer
Glenn Stokol

Tone Thomas
Priya Vennapusa
Michael Versaci
Lex Van Der Werff

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright
and other intellectual property laws. You may copy and print this document
solely for your own use in an Oracle training course. The document may not be
modified or altered in any way. Except where your use constitutes "fair use"
under copyright law, you may not use, share, download, upload, copy, print,
display, perform, reproduce, publish, license, post, transmit, or distribute this
document in whole or in part without the express authorization of Oracle.

The information contained in this document is subject to change without notice.
If you find any problems in the document, please report them in writing to:
Oracle University, 500 Oracle Parkway, Redwood Shores, California 94065
USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone
using the documentation on behalf of the United States Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government’s rights to use, modify, reproduce, release, perform,
display, or disclose these training materials are restricted by the terms of the
applicable Oracle license agreement and/or the applicable U.S. Government
contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Introduction

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

e Discuss the goals of the course

ldentify the modular components of PL/SQL.:
— Anonymous blocks
— Procedures and functions
— Packages

* Discuss the PL/SQL execution environment

« Describe the database schema and tables that are used in
the course

e List the PL/SQL development environments that are
available in the course

ORACLE

-2 Copyright © 2009, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do the
following:

 Create, execute, and maintain:
— Procedures and functions with OUT parameters

— Package constructs
— Database triggers

« Manage PL/SQL subprograms and triggers

 Use a subset of Oracle-supplied packages to:
— Generate screen, file, and Web output
— Schedule PL/SQL jobs to run independently

* Build and execute dynamic SQL statements
 Manipulate large objects (LOBS)

ORACLE

-3 Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Lessons for day 1:

Introduction

Creating Stored Procedures
Creating Stored Functions
Creating Packages

Using More Package Concepts

NS

ORACLE

-4 Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Lessons for day 2:

5. Using Oracle-Supplied Packages in Application
Development

6. Dynamic SQL and Metadata
Design Considerations for PL/SQL Code
8. Managing Dependencies

~

ORACLE

-5 Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Lessons for day 3:
9. Manipulating Large Objects
10. Creating Triggers

11. Applications for Triggers
12. Understanding and Influencing the PL/SQL Compiler

ORACLE

-6 Copyright © 2009, Oracle. All rights reserved.

ORACLE

Copyright © 2009, Oracle. All rights reserved.

-7

Human Resources (HR) Schema

LOCATIONS

LOCATION_ID
STREET_ADDRESS
POSTAL _CODE
CITY
STATE_PROVINCE
COUNTRY_ID

DEPARTMENTS

0.1

COUNTRIES

COUNTRY_ID
COUNTRY_HAME
REGIOH_ID

0.1

REGIONS

REGIOH_ID
REGIOH_HAME

a..

1

DEPARTMENT _ID
DEPARTMEHT _HAME
MAHAGER_ID
LOCATION_ID

JOB_HISTORY

x

0.1

EMPLOYEES

A

EMPLOYEE_ID
MAHAGER_ID
DEPARTMENT _ID
FIRST_HAME

LAST HAME
EMAIL
PHONE_HUMBER
HIRE_DATE

JOB_ID

SALARY
COMMISSION PCT

o

EMPLOYEE_ID
START_DATE
END_DATE
JOB_ID
DEPARTMENT _ID

=

.1

JOBS

=

JOB_ID
JOB_TITLE
MIN_SALARY
MAX_SALARY

Creating a Modularized and Layered Subprogram

Design
1 | XX XXX XXX - 2 3 P
XX XXX XXX L J | pF——] .
___________ XX XXX XXX o - o -
___________ "| XX XXX XXX P
XX XXX XXX a P | -
XX XXX XXX

 Modularize code into subprograms.
1. Locate code seguences repeated more than once.
2. Create subprogram P containing the repeated code.
3. Modify original code to invoke the new subprogram.

 Create subprogram layers for your application.
— Data access subprogram layer with SQL logic

— Business logic subprogram layer, which may or may not use
data access layer

ORACLE

-8 Copyright © 2009, Oracle. All rights reserved.

Modularizing Development
with PL/SQL Blocks

« PL/SQL is a block-structured language. The PL/SQL code
block helps modularize code by using:

— Anonymous blocks

— Procedures and functions
— Packages

— Database triggers

* The benefits of using modular program constructs are:
— Easy maintenance
— Improved data security and integrity
— Improved performance
— Improved code clarity

ORACLE

-9 Copyright © 2009, Oracle. All rights reserved.

Review of Anonymous Blocks

Anonymous blocks:
 Form the basic PL/SQL block structure
* Initiate PL/SQL processing tasks from applications

« Can be nested within the executable section of any
PL/SQL block

[DECLARE -- Declaration Section (Optional)
variable declarations; ...]

BEGIN -- Executable Section (Mandatory)
SQL or PL/SQL statements;

[EXCEPTION -- Exception Section (Optional)
WHEN exception THEN statements;]

END ; -- End of Block (Mandatory)

ORACLE

-10 Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL Procedures

Procedures are named PL/SQL blocks that perform a sequence
of actions.

CREATE PROCEDURE getemp IS -- header

emp id employees.employee id%type;

lname employees.last name%type;
BEGIN

emp id := 100;

SELECT last name INTO lname

FROM EMPLOYEES

WHERE employee id = emp id;

DBMS OUTPUT.PUT LINE('Last name: '| |lname);
END ;

/

ORACLE

[-11 Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL Functions

Functions are named PL/SQL blocks that perform a sequence
of actions and return a value. A function can be invoked from:

 Any PL/SQL block
A SQL statement (subject to some restrictions)

CREATE FUNCTION avg salary RETURN NUMBER IS
avg sal employees.salary%type;
BEGIN
SELECT AVG(salary) INTO avg sal
FROM EMPLOYEES;
RETURN avg sal;
END ;

/

ORACLE

-12 Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL Packages

PL/SQL packages have a specification and an optional body.
Packages group related subprograms together.

CREATE PACKAGE emp pkg IS
PROCEDURE getemp;
FUNCTION avg salary RETURN NUMBER;
END emp pkg;
/
CREATE PACKAGE BODY emp pkg IS
PROCEDURE getemp IS
BEGIN ... END;

FUNCTION avg salary RETURN NUMBER IS
BEGIN ... RETURN avg sal; END;
END emp pkg;

/

ORACLE

l-13 Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL Triggers

PL/SQL triggers are code blocks that execute when a specified
application, database, or table event occurs.

 Oracle Forms application triggers are standard anonymous
blocks.

 Oracle database triggers have a specific structure.

CREATE TRIGGER check salary
BEFORE INSERT OR UPDATE ON employees
FOR EACH ROW
DECLARE
¢ min constant number (8, 2)
¢ max constant number (8, 2)
BEGIN
IF :new.salary > c max OR
:new.salary < ¢ min THEN
RAISE APPLICATION ERROR(-20000,
'New salary is too small or large');
END IF;
END ;

/
ORACLE

|-14 Copyright © 2009, Oracle. All rights reserved.

1000.0;
500000.0;

PL/SQL Execution Environment

The PL/SQL run-time architecture:

PL/SQL
block

PL/SQL engine

PL/SQL
block |Procedural

Oracle server

Procedural
statement
executor

SQL statement executor

Copyright © 2009, Oracle. All rights reserved.

ORACLE

PL/SQL Development Environments

This course provides the following tools for developing PL/SQL
code:

 Oracle SQL Developer
e Oracle SQL*Plus (GUI or command-line versions)
 Oracle JDeveloper IDE

ORACLE

|-16 Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

e Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

 You can connect to any target Oracle Database schema
using standard Oracle Database authentication.

 You use SQL Developer in this course.

>

SQL Developer

ORACLE

| -17 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

a Connections |

=W T

------ a Conhnections

B new Cannection Cannecti.. Cannecti.. | Connection Mame |r'r1':.-'|:|:|r'|r‘|E|:ti|:|r'| |
Import Cannections Username ||:ura1 |
Pazzword |“"""‘"r |

Save Password

Oracle

Role default [] of Authentication
D> Connection T¥Pe | pasic - [] Proxy Connection

Hozthame |In:n:a|hn:|st |
Port 11521 |
(®) sID |-:|rcl |

|

() Service name |

Status [Success

| Help l | Save ‘ | Clear | | Test | l Connect k‘ | Cancel |

ORACLE

-18 Copyright © 2009, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of
DBMS OUTPUT package statements.

[teach_d |

ERRS B8 ¢ 135308599 seconds [teach_d |

Enter S0L Statement:
SET serveroutput ON|
DECLARE

w_Thame VARCHARZ (207 ;
EEGIN

SELECT first_name INTO v_fname FROM emplovees WHERE emplowvee_id=100;

[«

dhms_output. put_Tine{wv_Trname];
END;

i W
[= Results %Script Qutput E}Explain |§55|Autn:utrace |[3.DEMS Ctput -;‘I Cirs Ciatpit
¢ HdE |

anarmymaus blaock completed
STewen

ORACLE

-19 Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in SQL*Plus

e Terminal =Rl

Eile Edit View Terminal Tabs Help
[]

S0L*Plus: Release 10.2.0.1.0 - Production on Tue Feb 10 01:27:01 2009
Copyright (c) 1982, 2005, Oracle. All rights reserved.

Enter user-name: teach_d
Enter password:

Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options

5QL>» set serveroutput on
SQOL> create procedure hello is

RS

2 begin

3 dbms_output.put_line('Hello World');
4 end;

a f

Procedure created.

50L> execute hello
Hello World

PL/50QL procedure successfully completed.

sQL>

w

ORACLE

|- 20 Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in Oracle JDeveloper

)

i Oracle JDeveloper —

S~—

JDeveloper

-21

File Edit “iew 5earch Mavigate PBun Debug Refactor Verzioning Tools Window Help
RoBE 0 @ Y& YXEE S8 Aidn > -
@app.. | | | @sartrage | B HELLO | (=]
X VY procedure hello is e

. o - begin i
- Materialized ig & dbms_output.put_Tine('Hello World'y:

[+] Materialized Wi end;

r_—l Fackages

Elr_—l Procedures B

{_:I SeqQuences hd =
A [@]] |lsource|4] N
= HELLO - Str..] [Elrunning - Log 0

e

E-8 hella
H-E] hello

Connecting to the database teach_d.
Hello World

Process exited.

Disconnecting from the database teach_d.

Run

Messages | [Running | (4 [=]

| Editing

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Edit

Summary

In this lesson, you should have learned how to:

 Declare named PL/SQL blocks, including procedures,
functions, packages, and triggers

 Use anonymous (unnamed) PL/SQL blocks to invoke
stored procedures and functions

 Use SQL Developer or SQL*Plus to develop PL/SQL code

« Explain the PL/SQL execution environment:

— The client-side PL/SQL engine for executing PL/SQL code in
Oracle Forms and Oracle Reports

— The server-side PL/SQL engine for executing PL/SQL code
stored in an Oracle Database

ORACLE

| - 22 Copyright © 2009, Oracle. All rights reserved.

Practice I: Overview

This practice covers the following topics:
 Browsing the HR tables
 Creating a simple PL/SQL procedure
 Creating a simple PL/SQL function

e Using an anonymous block to execute the PL/SQL
procedure and function

ORACLE

|- 23 Copyright © 2009, Oracle. All rights reserved.

Creating Stored Procedures

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe and create a procedure

 Create procedures with parameters

« Differentiate between formal and actual parameters
« Use different parameter-passing modes

 |Invoke a procedure

 Handle exceptions in procedures

« Remove a procedure

ORACLE

1-2 Copyright © 2009, Oracle. All rights reserved.

What Is a Procedure?

A procedure:
* |s atype of subprogram that performs an action
 Can be stored in the database as a schema object
 Promotes reusability and maintainability

ORACLE

1-3 Copyright © 2009, Oracle. All rights reserved.

Syntax for Creating Procedures

« Use CREATE PROCEDURE followed by the name, optional
parameters, and keyword IS or AS.

« Addthe OR REPLACE option to overwrite an existing
procedure.

 Write a PL/SQL block containing local variables,
a BEGIN statement, and an END statement (or END

procedure name).

CREATE [OR REPLACE] PROCEDURE procedure name
[(parameterl [mode] datatypel,
parameter2 [mode] datatype2, ...)]
IS|AS
[local variable declarations; ..]
BEGIN — PL/SQL Block
-- actions;
END [procedure name];

ORACLE

1-4 Copyright © 2009, Oracle. All rights reserved.

Developing Procedures

b Compiler - Log kd
- Project: C:'\Program Files'SaQL Developer 1.1%gl
{23 PROCEDURE ORA41 ADD_JOB_HISTORY (@G
©(E) Error(3 51 PLS-00103: Encourtered thy
7 View errors or warnings
% SQL Plus o in SQL Developer
7 — A
gab B 2zl
= P 22" YES L2 SQL Plus
‘{*:-’% A z Use SHOW ERRORS
= - ‘ command in SQL*Plus
Create or Compiler View compiler
edit warnings or warnings or) 2,
”
procedure err[)rs’P errors PP
sak Use USER/ALL/DBA _
pLL”.. ERRORS Views
. u,:,-'
(oL Lse
sii

ﬂ'h
L -

Execute procedure

ORACLE

1-5 Copyright © 2009, Oracle. All rights reserved.

What Are Parameters?

Parameters:
 Are declared after the subprogram name in the PL/SQL
header
 Pass or communicate data between the caller and the
subprogram

 Are used like local variables but are dependent on their
parameter-passing mode:
— An IN parameter (the default) provides values for a
subprogram to process.
— An OUT parameter returns a value to the caller.

— An IN OUT parameter supplies an input value, which may be
returned (output) as a modified value.

ORACLE

1-6 Copyright © 2009, Oracle. All rights reserved.

Formal and Actual Parameters

 Formal parameters: Local variables declared in the
parameter list of a subprogram specification

Example:

CREATE PROCEDURE raise sal(id NUMBER, sal NUMBER) IS
BEGIN ...

END raise sal;

« Actual parameters: Literal values, variables, and
expressions used in the parameter list of the called
subprogram
Example:

emp id := 100;

raise sal(emp id, 2000)

ORACLE
1-7 Copyright © 2009, Oracle. All rights reserved.

Procedural Parameter Modes

« Parameter modes are specified in the formal parameter
declaration, after the parameter name and before its data

type.
« The IN mode is the default if no mode is specified.

CREATE PROCEDURE procedure(param [mode] datatype)

Modes
r \ al
*| [l 1N (default) > pvl.a"_5
Calling |, | ZZ
environment [out ﬂ/
g) [v our < ’lf.fr

Procedure

ORACLE
Copyright © 2009, Oracle. All rights reserved.

1-8

Using IN Parameters: Example

CREATE OR REPLACE PROCEDURE raise salary

*(1id IN employees.employee id%TYPE,
percent IN NUMBER) °
IS
BEGIN
UPDATE employees
SET salary = salary * (1 + percent/100)

WHERE employee id = id;
END raise salary;

/

EXECUTE raise salary(176,10)

ORACLE

1-9 Copyright © 2009, Oracle. All rights reserved.

Using OoUT Parameters: Example

CREATE OR REPLACE PROCEDURE query emp
»(id IN employees.employee id%TYPE,
name OUT employees.last name%TYPE,
salary OUT employees.salary%TYPE) IS

BEGIN
SELECT last name, salary INTO name, salary
FROM employees

WHERE employee id = id;
END query emp;

DECLARE
emp name employees.last name%TYPE;
emp sal employees.salary%TYPE;

BEGIN ‘
query emp (171, emp name, emp sal); ...
END ;

ORACLE

1-10 Copyright © 2009, Oracle. All rights reserved.

Viewing OUT Parameters

 Use PL/SQL variables that are printed with calls to the
DBMS OUTPUT.PUT LINE procedure.

SET SERVEROUTPUT ON

DECLARE

emp name employees.last name%TYPE;
emp sal employees.salary%TYPE;

BEGIN
query emp (171, emp name, emp sal);
DBMS OUTPUT.PUT LINE('Name: ' || emp name);
DBMS OUTPUT.PUT LINE('Salary: ' || emp sal);
END;

* Use SQL*Plus host variables, execute QUERY EMP using

host variables, and print the host variables.
VARIABLE name VARCHAR2 (25)
VARIABLE sal NUMBER
EXECUTE query emp (171, :name, :sal)
PRINT name sal

ORACLE
1-11 Copyright © 2009, Oracle. All rights reserved.

Using IN OUT Parameters: Example

Calling environment

phone no (before the call) phone no (after the call)

'‘8006330575° '(800)633-0575'

CREATEvOR REPLACE PROCEDURE format phone
(phone no IN OUT VARCHAR2) IS
BEGIN
phone no := '(' || SUBSTR(phone no,1,3) ||
')' || SUBSTR(phone no,4,3) ||
'-' || SUBSTR(phone no,7);

END format phone;
/

ORACLE

1-12 Copyright © 2009, Oracle. All rights reserved.

Syntax for Passing Parameters

 Positional:

— Lists the actual parameters in the same order as the formal
parameters

e Named:

— Lists the actual parameters in arbitrary order and uses the
association operator (=>) to associate a named formal
parameter with its actual parameter

e Combination:

— Lists some of the actual parameters as positional and some
as named

ORACLE

1-13 Copyright © 2009, Oracle. All rights reserved.

Parameter Passing: Examples

CREATE OR REPLACE PROCEDURE add dept (
name IN departments.department name%TYPE,
loc IN departments.location id%TYPE) IS
BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (departments seq.NEXTVAL, name, loc);
END add dept;

/

« Passing by positional notation:
EXECUTE add dept ('TRAINING', 2500)

e Passing by nhamed notation:
EXECUTE add dept (loc=>2400, name=>'EDUCATION')

ORACLE

1-14 Copyright © 2009, Oracle. All rights reserved.

Using the DEFAULT Option for Parameters

« Defines default values for parameters:

CREATE OR REPLACE PROCEDURE add dept (
name departments.department_name%TYPEh='ﬁnknown',
loc departments.location id%TYPE|DEFAULT 1700)
IS
BEGIN
INSERT INTO departments (...)
VALUES (departments seq.NEXTVAL, name, loc);
END add dept;

* Provides flexibility by combining the positional and named
parameter-passing syntax:
EXECUTE add dept

EXECUTE add dept ('ADVERTISING', loc => 1200)
EXECUTE add dept (loc => 1200)

ORACLE

1-15 Copyright © 2009, Oracle. All rights reserved.

Summary of Parameter Modes

IN OUT IN OUT

Default mode Must be specified Must be specified

Value is passed into Returned to calling Passed into
subprogram environment subprogram; returned to

calling environment

Formal parameter acts Uninitialized variable |Initialized variable
as a constant

Actual parameter can be | Must be a variable Must be a variable
a literal, expression,
constant, or initialized

variable
Can be assigned a Cannot be assigned Cannot be assigned
default value a default value a default value

ORACLE

1-17 Copyright © 2009, Oracle. All rights reserved.

Invoking Procedures

You can invoke procedures by using:
 Anonymous blocks
« Another procedure, as in the following example:

CREATE OR REPLACE PROCEDURE process employees
IS
CURSOR emp cursor IS
SELECT employee id
FROM employees;

BEGIN
FOR emp rec IN emp cursor
LOOP
raise salary(emp rec.employee id, 10);
END LOOP;
COMMIT;
END process employees;
/

ORACLE

1-18 Copyright © 2009, Oracle. All rights reserved.

Handled Exceptions

Calling procedure Called procedure

Exception raised

Exception handled

Control returns
to calling procedure

ORACLE

1-19 Copyright © 2009, Oracle. All rights reserved.

Handled Exceptions: Example

CREATE PROCEDURE add department (
name VARCHAR2, mgr NUMBER, loc NUMBER) IS
BEGIN
INSERT INTO DEPARTMENTS (department id,
department name, manager id, location id)
VALUES (DEPARTMENTS SEQ.NEXTVAL, name, mgr, loc);

DBMS OUTPUT.PUT LINE ('Added Dept: '||name);
EXCEPTION
WHEN OTHERS THEN

DBMS OUTPUT.PUT LINE('Err: adding dept: '| |name);
END;

CREATE PROCEDURE create departments IS

BEGIN

add department ('Media', 100, 1800); ;
add department ('Editing', 99, 1800);)‘
>add_department('Advertising', 101, 1800);
END;

ORACLE

1-20 Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled

Calling procedure Called procedure

Exception raised

Exception not
handled

Control returned
to exception section
of calling procedure

ORACLE

1-21 Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled: Example

SET SERVEROUTPUT ON
CREATE PROCEDURE add department noex(
name VARCHAR2, mgr NUMBER, loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department id,

department name, manager id, location id)
VALUES (DEPARTMENTS SEQ.NEXTVAL, name, mgr, loc);
DBMS OUTPUT.PUT LINE ('Added Dept: '| |name) ;
END ;

CREATE PROCEDURE create departments noex IS
BEGIN
add department noex('Media', 100, 1800);)(
add department noex('Editing', 99, 1800);)(
add department noex('Advertising', 101, 1800); %
ND ;

ORACLE

1-22 Copyright © 2009, Oracle. All rights reserved.

Removing Procedures

You can remove a procedure that is stored in the database.
e Syntax:

DROP PROCEDURE procedure name

« Example:

DROP PROCEDURE raise salary;

ORACLE

1-23 Copyright © 2009, Oracle. All rights reserved.

Viewing Procedures in the Data Dictionary

Information for PL/SQL procedures is saved in the following
data dictionary views:

* View source code in the USER SOURCE table to view the
subprograms that you own, or the ALL SOURCE table for

procedures that are owned by others who have granted
you the EXECUTE privilege.

SELECT text
FROM user source
WHERE name='ADD DEPARTMENT' and type='PROCEDURE'

ORDER BY line;

* View the names of procedures in USER OBJECTS.

SELECT object name
FROM user objects
WHERE object type = 'PROCEDURE';

ORACLE

1-24 Copyright © 2009, Oracle. All rights reserved.

Benefits of Subprograms

 Easy maintenance

 Improved data security and integrity
 Improved performance
 Improved code clarity

ORACLE

1-25 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Write a procedure to perform a task or an action

 Create, compile, and save procedures in the database by
using the CREATE PROCEDURE SQL command

« Use parameters to pass data from the calling environment

to the procedure by using three different parameter modes:
IN (the default), OUT, and IN OUT

e Recognize the effect of handling and not handling
exceptions on transactions and calling procedures

ORACLE

1-26 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Remove procedures from the database by using the DROP
PROCEDURE SQL command

 Modularize your application code by using procedures as
building blocks

ORACLE

1-27 Copyright © 2009, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:

 Creating stored procedures to:

— Insert new rows into a table using the supplied parameter
values

— Update data in a table for rows that match the supplied
parameter values

— Delete rows from a table that match the supplied parameter
values

— Query a table and retrieve data based on supplied parameter
values

 Handling exceptions in procedures
 Compiling and invoking procedures

ORACLE

1-28 Copyright © 2009, Oracle. All rights reserved.

Creating Stored Functions

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe the uses of functions

 Create stored functions

* Invoke a function

 Remove a function

« Differentiate between a procedure and a function

ORACLE

2-2 Copyright © 2009, Oracle. All rights reserved.

Overview of Stored Functions

A function:
 Is anamed PL/SQL block that returns a value

« Can be stored in the database as a schema object for
repeated execution

* |s called as part of an expression or used to provide a
parameter value

ORACLE

2-3 Copyright © 2009, Oracle. All rights reserved.

Syntax for Creating Functions

The PL/SQL block must have at least one RETURN statement.

CREATE [OR REPLACE] FUNCTION function name
[(parameterl [model] datatypel, ...)]
RETURN datatype IS |AS
[local variable declarations; ..]
BEGIN
- actions; — PL/SQL block
RETURN expression;
END [function name];

ORACLE

2-4 Copyright © 2009, Oracle. All rights reserved.

Developing Functions

N

b

Create or
edit function

Y

=
w
L]
e —
T LY ‘

AhRARY W RN

" e k.

i
-
r

‘
.4ﬁ

Compiler
warnings or

errqrs?
i

-
WVRNYN
L T Y
-<
M
wm

AAAMRRA NN

‘:%_
U
(e

=

-
-
- WEELEEE

-
-

Invoke function

Copyright © 2009, Oracle. All rights reserved.

—

View compiler

warnings or
errors

- Elcampiler - Log]

------ @ Error(6 3) PLISGL: SGL Statement ignored

< 0] Project: Cagldeveloper! 13=gldeveloperisgldeyvelo
> £} FUNCTION ORAS1 GET_JOB@ora51

------ @ Errors,10): PLISGL: ORA-00304: "JOB_TIT

View errors or warnings
in SQL Developer

L3 SQL Plus

Use SHOW ERRORS
command in SQL*Plus

Use USER/ALL/DBA _
ERRORS Views

ORACLE

Stored Function: Example

e Create the function:

CREATE OR REPLACE FUNCTION get sal
(id employees.employee id%TYPE) RETURN NUMBER IS
sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO sal
FROM employees
WHERE employee id = id;

RETURN sal;

END get sal;

/

* |Invoke the function as an expression or a parameter value:

EXECUTE dbms output.put line(get sal(100))

ORACLE

2-6 Copyright © 2009, Oracle. All rights reserved.

Ways to Execute Functions

* |Invoke as part of a PL/SQL expression, using a:
— Host variable to obtain the result:

VARIABLE salary NUMBER
EXECUTE :salary := get sal(100)

— Local variable to obtain the result:

DECLARE sal employees.salary%type;
BEGIN

sal := get sal(100);
END ;

« Use as a parameter to another subprogram:
EXECUTE dbms output.put line(get sal(100))

 Use in a SQL statement (subject to restrictions):
SELECT job id, get sal (employee id) FROM employees;

ORACLE

2-7 Copyright © 2009, Oracle. All rights reserved.

Advantages of User-Defined Functions
In SQL Statements

« Can extend SQL where activities are too complex, too
awkward, or unavailable with SQL

 Can increase efficiency when used in the WHERE clause to
filter data, as opposed to filtering the data in the application

 Can manipulate data values

ORACLE

2-8 Copyright © 2009, Oracle. All rights reserved.

Function in SQL Expressions: Example

CREATE OR REPLACE FUNCTION tax(wvalue IN NUMBER)
RETURN NUMBER IS
BEGIN
RETURN (value * 0.08);
END tax;
/
SELECT employee id, last name, salary, tax(salary)
FROM employees
WHERE department id = 100;

EMPLOVEE_ID |[§ LasT_MaME|[E] salary |f Tax@Ealarn
1 105 Greenberg 12000 950
2 109 Faviet 9000 720
3 110 Chen 2200 ASE
4 111 Sciarra 7700 G1E
5 112 Urman 7E00 Az 4
& 113 Popp 900 P

ORACLE

2-9 Copyright © 2009, Oracle. All rights reserved.

Locations to Call User-Defined Functions

User-defined functions act like built-in single-row functions and
can be used in:

e The SELECT list or clause of a query
« Conditional expressions of the WHERE and HAVING
clauses

e The CONNECT BY, START WITH, ORDER BY, and GROUP
BY clauses of a query

e The VALUES clause of the INSERT statement
e The SET clause of the UPDATE statement

ORACLE

2-10 Copyright © 2009, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

« User-defined functions that are callable from SQL
expressions must:

— Be stored in the database
— Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types
— Return valid SQL data types, not PL/SQL-specific types
 When calling functions in SQL statements:

— Parameters must be specified with positional notation
— You must own the function or have the EXECUTE privilege

ORACLE

2-11 Copyright © 2009, Oracle. All rights reserved.

Controlling Side Effects When Calling Functions
from SQL Expressions

Functions called from:
e A SELECT statement cannot contain DML statements

e An UPDATE or DELETE statement on a table T cannot
guery or contain DML on the same table T

 SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

ORACLE

2-12 Copyright © 2009, Oracle. All rights reserved.

Restrictions on Calling Functions from SQL.:
Example

CREATE OR REPLACE FUNCTION dml call sql (sal NUMBER)
RETURN NUMBER IS
BEGIN
INSERT INTO employees (employee id, last name,
email, hire date, job id, salary)
VALUES (1, 'Frost', 'jfrost@company.com',
SYSDATE, 'SA MAN', sal);
RETURN (sal + 100);
END ;

UPDATE employees
SET salary = dml call sql (2000)
WHERE employee id = 170;

Error report:

SOL Error: 0ORA-04091: table ORAG1.EMPLOYEES: is mutating, trigderSfunction may not see it
OFEA-06512: at "0RAA1.DML_CALL_SQL", Tine 4

4091, 00000 - "table ¥s.¥s is mutating, triggerfunction may not see it"

ORACLE

2-13 Copyright © 2009, Oracle. All rights reserved.

Removing Functions

Removing a stored function:

 You can drop a stored function by using the following
syntax:

DROP FUNCTION function name

Example:
DROP FUNCTION get sal;

e All the privileges that are granted on a function are
revoked when the function is dropped.
e The CREATE OR REPLACE syntax Is equivalent to dropping

a function and re-creating it. Privileges granted on the
function remain the same when this syntax is used.

ORACLE

2-14 Copyright © 2009, Oracle. All rights reserved.

Viewing Functions in the Data Dictionary

Information for PL/SQL functions is stored in the following
Oracle data dictionary views:

* You can view source code in the USER SOURCE table for
subprograms that you own, or the ALL SOURCE table for
functions owned by others who have granted you the
EXECUTE privilege.

SELECT text

FROM user source
WHERE type = 'FUNCTION'
ORDER BY line;

 You can view the names of functions by using
USER OBJECTS.

SELECT object name
FROM user objects
WHERE object type = 'FUNCTION';

ORACLE

2-15 Copyright © 2009, Oracle. All rights reserved.

ORACLE

2 - Copyright © 2009, Oracle. All rights reserved.

Procedures Versus Functions

Procedures Functions

Execute as a PL/SQL statement

Invoke as part of an expression

Do not contain the RETURN
clause in the header

Must contain a RETURN
clause in the header

Can return values (if any) in
output parameters

Must return a single value

Can contain a RETURN
statement without a value

Must contain at least one
RETURN statement

16

Summary

In this lesson, you should have learned how to:

 Write a PL/SQL function to compute and return a value by
using the CREATE FUNCTION SQL Statement

* Invoke a function as part of a PL/SQL expression
 Use stored PL/SQL functions in SQL statements

 Remove a function from the database by using the DROP
FUNCTION SQL statement

ORACLE

2-17 Copyright © 2009, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:

* Creating stored functions:

— To guery a database table and return specific values
— To be used in a SQL statement

— To insert a new row, with specified parameter values, into a
database table

— Using default parameter values
e Invoking a stored function from a SQL statement
« Invoking a stored function from a stored procedure

ORACLE

2-18 Copyright © 2009, Oracle. All rights reserved.

Creating Packages

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe packages and list their components

 Create a package to group together related variables,
cursors, constants, exceptions, procedures, and functions

 Designate a package construct as either public or private
* Invoke a package construct
 Describe the use of a bodiless package

ORACLE

3-2 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Packages: Overview

PL/SQL packages:

 Group logically related components:
— PL/SQL types
— Variables, data structures, and exceptions
— Subprograms: Procedures and functions
e Consist of two parts:
— A specification
— A body

 Enable the Oracle server to read multiple objects into
memory at once

ORACLE

3-3 Copyright © 2009, Oracle. All rights reserved.

Components of a PL/SQL Package

Package 4 -
specification variable

—> Public

Procedure A declaration:

/ variable _

Procedure B definition ...

-
U

Procedure A definition — Private
variable

Package BEGIN

body .
END;
N L/

3-4 Copyright © 2009, Oracle. All rights reserved.

Visibility of Package Components

Package 4 R
specification || public_var [° e
4—"” I""'i!';ﬁ;gil
FEo
Procedure A; .
B External
code

f: private_var |« ‘-\

Procedure B IS S
BEGIN ... END;

Procedure A IS
local _var

Package BEGIN

body .
END;
N /

3-5 Copyright © 2009, Oracle. All rights reserved.

Developing PL/SQL Packages

1 Compiler - Log hd
- Project: C:'Program Files'SGL Develaper 1.1%gl
[PROCEDURE ORA41 ADD_JOB_HISTORY @

LB Error(3 51 PLS-00103: Encourtered the

S22 sqL Plusj | .
= f o 7 View errors or warnings

J gk - in SQL Developer
5 l-'if"'. 9 i -
Z ' , ’ 2Lzl
.—4'/{ > e
~ ' °2" YES L2 SQL Plus
|‘/ ¢ g Use the SHOW ERRORS
. command in SQL*Plus
Create or edit Compiler View compiler >
package body warnings or errors? warnings or 2,
”
and spec errors i

Use USER/ALL/DBA _
ERRORS Views

Invoke package
subprograms

ORACLE

3-6 Copyright © 2009, Oracle. All rights reserved.

Creating the Package Specification

Syntax:

CREATE [OR REPLACE] PACKAGE package name IS|AS
public type and variable declarations
subprogram specifications

END [package name] ;

e The OR REPLACE option drops and re-creates the
package specification.

 Variables declared in the package specification are
Initialized to NULL by default.

e All the constructs declared in a package specification are
visible to users who are granted privileges on the package.

ORACLE

3-7 Copyright © 2009, Oracle. All rights reserved.

Example of Package Specification: comm pkg

CREATE OR REPLACE PACKAGE comm pkg IS
std comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset comm(new comm NUMBER) ;

END comm pkg;
/

e STD COMM is a global variable initialized to 0. 10.

e RESET COMM IS a public procedure used to reset the
standard commission based on some business rules. It is
Implemented in the package body.

ORACLE

3-8 Copyright © 2009, Oracle. All rights reserved.

Creating the Package Body

Syntax:

CREATE [OR REPLACE] PACKAGE BODY package name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]

END [package name] ;

e The OR REPLACE option drops and re-creates the
package body.

* |dentifiers defined in the package body are private and not
visible outside the package body.

« All private constructs must be declared before they are
referenced.

« Public constructs are visible to the package body.

ORACLE

3-9 Copyright © 2009, Oracle. All rights reserved.

Example of Package Body: comm pkg

CREATE OR REPLACE PACKAGE |BODY|comm pkg IS

FUNCTION validate (comm NUMBER) RETURN BOOLEAN IS
max comm employees.commission pct%type;

BEGIN
SELECT MAX (commission pct) INTO max comm
FROM employees;
RETURN (comm BETWEEN 0.0 AND max comm) ;

END validate;

PROCEDURE reset comm (new comm NUMBER) IS BEGIN
IF validate(new comm) THEN

std comm := new comm; -- reset public var

ELSE RAISE APPLICATION ERROR (

-20210, 'Bad Commission');

END IF;
END reset comm;
END comm pkg;

ORACLE

3-10 Copyright © 2009, Oracle. All rights reserved.

Invoking Package Subprograms

* |nvoke a function within the same package:

CREATE OR REPLACE PACKAGE BODY comm pkg IS
PROCEDURE reset comm(new comm NUMBER) IS

BEGIN
IF|validate (new comm)| THEN
std comm := new comm;
ELSE ...
END IF;

END reset comm;
END comm pkg;

« _Invoke a package procedure from SQL*Plus:
EXECUTE comm pkg.reset comm(0.15)

* Invoke a package procedure in a different schema:

EXECUTE scott.comm pkg.reset comm(0.15)

ORACLE

3-11 Copyright © 2009, Oracle. All rights reserved.

Creating and Using Bodiless Packages

CREATE OR REPLACE PACKAGE global consts IS

mile 2 kilo CONSTANT NUMBER := 1.6093;
kilo 2 mile CONSTANT NUMBER := 0.6214;
yard 2 meter CONSTANT NUMBER := 0.9144;
meter 2 yard CONSTANT NUMBER := 1.0936;

END global consts;

BEGIN DBMS OUTPUT.PUT LINE('20 miles = ' ||
20 * global consts.mile 2 kilo || ' km');
END ;

CREATE FUNCTION mtr2yrd(m NUMBER) RETURN NUMBER IS
BEGIN

RETURN (m * global consts.meter 2 yard);
END mtr2yrd;

/
EXECUTE DBMS OUTPUT.PUT LINE (mtr2yrd(1l))

ORACLE

3-12 Copyright © 2009, Oracle. All rights reserved.

Removing Packages

 To remove the package specification and the body, use
the following syntax:

DROP PACKAGE package name;

« To remove the package body, use the following syntax:

DROP PACKAGE BODY package name;

ORACLE

3-13 Copyright © 2009, Oracle. All rights reserved.

Viewing Packages in the Data Dictionary

The source code for PL/SQL packages is maintained and is
viewable through the USER SOURCE and ALL SOURCE tables

In the data dictionary.
 To view the package specification, use:

SELECT text
FROM user source
WHERE name = 'COMM PKG' AND type = 'PACKAGE';

 To view the package body, use:

SELECT text
FROM user source
WHERE name = 'COMM PKG' AND type = 'PACKAGE BODY';

ORACLE

3-14 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Writing Packages

 Construct packages for general use.
« Define the package specification before the body.

 The package specification should contain only those
constructs that you want to be public.

 Place items in the declaration part of the package body
when you must maintain them throughout
a sSession or across transactions.

 Changes to the package specification require
recompilation of each referencing subprogram.

 The package specification should contain as few
constructs as possible.

ORACLE

3-15 Copyright © 2009, Oracle. All rights reserved.

Advantages of Using Packages

e Modularity: Encapsulating related constructs

« Easier maintenance: Keeping logically related functionality
together

« Easier application design: Coding and compiling the
specification and body separately
e Hiding information:
— Only the declarations in the package specification are visible
and accessible to applications.

— Private constructs in the package body are hidden and
Inaccessible.

— All coding is hidden in the package body.

ORACLE

3-16 Copyright © 2009, Oracle. All rights reserved.

Advantages of Using Packages

 Added functionality: Persistency of variables and cursors

« Better performance:

— The entire package is loaded into memory when the package
IS first referenced.

— There is only one copy in memory for all users.
— The dependency hierarchy is simplified.

« Overloading: Multiple subprograms of the same name

ORACLE

3-17 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

* Improve code organization, management, security, and
performance by using packages

 Create and remove package specifications and bodies

« Group related procedures and functions together in a
package

 Encapsulate the code in a package body
 Define and use components in bodiless packages

 Change a package body without affecting a package
specification

ORACLE

3-18 Copyright © 2009, Oracle. All rights reserved.

Summary

Command Task

CREATE [OR REPLACE] PACKAGE | Create (or modify) an existing
package specification.

CREATE [OR REPLACE] PACKAGE | Create (or modify) an existing
BODY package body.

DROP PACKAGE Remove both the package
specification and package body.

DROP PACKAGE BODY Remove only the package body.

ORACLE

3-19 Copyright © 2009, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
e Creating packages
* Invoking package program units

ORACLE

3-20 Copyright © 2009, Oracle. All rights reserved.

Using More Package Concepts

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Overload package procedures and functions
 Use forward declarations
« Create an initialization block in a package body

 Manage persistent package data states for the life of a
session

 Use PL/SQL tables and records in packages

 Wrap source code stored in the data dictionary so that it is
not readable

ORACLE

4-2 Copyright © 2009, Oracle. All rights reserved.

Overloading Subprograms

The overloading feature in PL/SQL:

 Enables you to create two or more subprograms with the
same name

 Requires that the subprogram’s formal parameters differ in
number, order, or data type family

 Enables you to build flexible ways for invoking
subprograms with different data

* Provides a way to extend functionality without loss of
existing code

Note: Overloading can be done with local subprograms,
package subprograms, and type methods, but not with stand-
alone subprograms.

ORACLE

4-3 Copyright © 2009, Oracle. All rights reserved.

Overloading: Example

CREATE OR REPLACE PACKAGE dept pkg IS

PROCEDURE add=department(deptno NUMBER,

name VARCHAR2 := 'unknown', loc NUMBER := 1700) ;

PROCEDURE add_departmentk

name VARCHAR2 := 'unknown', loc NUMBER := 1700);
END dept pkg:;

/

ORACLE

4-5 Copyright © 2009, Oracle. All rights reserved.

Overloading: Example

CREATE OR REPLACE PACKAGE BODY dept pkg IS
PROCEDUREladd_department|(deptno NUMBER,

name VARCHAR2:='unknown', loc NUMBER:=1700) IS
BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (deptno, name, 1loc);
END add department;

PROCEDUREIadd_department (
name VA :="unknown', loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments (department id,
department name, location id)
VALUES (departments seq.NEXTVAL, name, loc);
END add department;
END dept pkg;
/

ORACLE

4-6 Copyright © 2009, Oracle. All rights reserved.

Overloading and the sSTANDARD Package

A package named STANDARD defines the PL/SQL
environment and built-in functions.

* Most built-in functions are overloaded. An example is the
TO CHAR function:

FUNCTION TO CHAR (pl DATE) RETURN VARCHAR2;
FUNCTION TO CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO CHAR (pl DATE, P2 VARCHAR2) RETURN
VARCHAR2;

FUNCTION TO CHAR (pl NUMBER, P2 VARCHAR2) RETURN
VARCHAR2;

« A PL/SQL subprogram with the same name as a built-in
subprogram overrides the standard declaration in the local
context, unless you qualify the built-in subprogram with its
package name.

ORACLE

4-7 Copyright © 2009, Oracle. All rights reserved.

Using Forward Declarations

* Block-structured languages (such as PL/SQL) must
declare identifiers before referencing them.

« Example of a referencing problem:

CREATE OR REPLACE PACKAGE BODY forward pkg IS
PROCEDURE award bonus(. . .) IS
BEGIN
calc rating| (. . .); --illegal reference
END ;
PROCEDURE calc rating (. . .) IS
BEGIN
END ;
END forward pkg;
/

ORACLE

4-8 Copyright © 2009, Oracle. All rights reserved.

Using Forward Declarations

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

CREATE OR REPLACE PACKAGE BODY forward pkg IS
PROCEDURE |calc rating| (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award bonus(...) IS

B
icalc_rating (...): -- reference resolved!

END ;

PROCEDURE |calc rating| (...) IS -- implementation
BEGIN

END ;
END forward pkg;

ORACLE

4-9 Copyright © 2009, Oracle. All rights reserved.

Package Initialization Block

The block at the end of the package body executes once and is
used to initialize public and private package variables.

CREATE OR REPLACE PACKAGE taxes IS
tax NUMBER ;
... =-- declare all public procedures/functions
END taxes;
/
CREATE OR REPLACE PACKAGE BODY taxes IS
-- declare all private variables
-- define public/private procedures/functions

BEGIN

SELECT rate value INTO tax
FROM tax rates
WHERE rate name = 'TAX';
END taxes;
/

ORACLE

4-10 Copyright © 2009, Oracle. All rights reserved.

Using Package Functions in SQL
and Restrictions

 Package functions can be used in SQL statements.

e Functions called from:

— A query or DML statement must not end the current
transaction, create or roll back to a savepoint, or alter the
system or session

— A query or a parallelized DML statement cannot execute a
DML statement or modify the database

— A DML statement cannot read or modify the table being
changed by that DML statement

Note: A function calling subprograms that break the preceding
restrictions is not allowed.

ORACLE

4-11 Copyright © 2009, Oracle. All rights reserved.

Package Function in SQL: Example

CREATE OR REPLACE PACKAGE taxes pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER;
END taxes pkg;
/
CREATE OR REPLACE PACKAGE BODY taxes pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER IS

rate NUMBER := 0.08;
BEGIN
RETURN (wvalue * rate);
END tax;
END taxes pkg:;

/

SELECT | taxes pkg.tax(salary)|, salary, last name
FROM employees;

ORACLE

4-12 Copyright © 2009, Oracle. All rights reserved.

Persistent State of Packages

The collection of package variables and the values define the
package state. The package state is:

* Initialized when the package is first loaded

« Persistent (by default) for the life of the session
— Stored in the User Global Area (UGA)
— Unique to each session

— Subject to change when package subprograms are called or
public variables are modified

* Not persistent for the session but persistent for the life of a
subprogram call when using PRAGMA

SERIALLY REUSABLE In the package specification

ORACLE

4-13 Copyright © 2009, Oracle. All rights reserved.

Persistent State of Package
Variables: Example

State for: -Scott-

Events MAX
9:00 Scott> EXECUTE 0.10 0.4 - 0.4
comm pkg.reset comm(0.25) 0.25
9:30 Jones> INSERT
INTO employees (
last name,commission pct)
VALUES ('Madonna', 0.8); 0.25 0.4 0.8
9:35 Jones> EXECUTE 0.1
comm pkg.reset comm (0.5) 0.25 0.4 0.5] 0.8
10:00 Scott> EXECUTE
comm pkg.reset comm(0.6)
Err -20210 'Bad Commission' 0.25 0.4 |o.5 0.8
11:00 | Jones> ROLLBACK; 0.25 0.4 0.5 0.4
11:01 | EXIT ... 0.25 0.4 - 0.4
12:00 | EXEC comm pkg.reset comm(0.2) 0.25 0.4 0.2 0.4

ORACLE

4-14 Copyright © 2009, Oracle. All rights reserved.

Persistent State of a Package Cursor

CREATE OR REPLACE PACKAGE BODY curs pkg IS
CURSOR c¢ IS SELECT employee id FROM employees;
PROCEDURE open IS

BEGIN
IF NOT c%ISOPEN THEN OPEN c; END IF;

END open;

FUNCTION next (n NUMBER := 1) RETURN BOOLEAN IS
emp id employees.employee id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP

FETCH c INTO emp id;
EXIT WHEN c%NOTFOUND;
DBMS OUTPUT.PUT LINE('Id: ' || (emp id));
END LOOP;
RETURN c%FOUND;
END next;
PROCEDURE close IS BEGIN
IF c%$ISOPEN THEN CLOSE c¢; END IF;
END close;
END curs pkg;

ORACLE

4 -15 Copyright © 2009, Oracle. All rights reserved.

Executing CURS PKG

SET SERVEROUTPUT ON
EXECUTE curs pkg.open
DECLARE

more BOOLEAN := curs pkg.next(3);
BEGIN

IF NOT more THEN

curs pkg.close;

END IF;

END;

/

anamymaus hlaock completed
anomymous block completed
Id: 100
Id: 101
Id: 102

anomymous block completed
anamymous block completed
Id: 103
Id: 104
Id: 105

ORACLE

4-16 Copyright © 2009, Oracle. All rights reserved.

Using PL/SQL Tables
of Records in Packages

CREATE OR REPLACE PACKAGE emp pkg IS
TYPE emp table type IS TABLE OF employees%ROWIYPE
INDEX BY BINARY INTEGERj;
PROCEDURE get employees (emps OUT emp table type);
END emp pkg;
/

CREATE OR REPLACE PACKAGE BODY emp pkg IS
PROCEDURE get employees (emps OUT emp table type) IS
i BINARY INTEGER := O0;
BEGIN
FOR emp record IN (SELECT * FROM employees)
LOOP
emps (i) := emp record;
i:= 1i+1;
END LOOP;
END get employees;
END emp pkg;
/

ORACLE

4-17 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Wrapper

« The PL/SQL wrapper is a stand-alone utility that hides
application internals by converting PL/SQL source code
Into portable object code.

 Wrapping has the following features:

— Platform independence

— Dynamic loading

— Dynamic binding

— Dependency checking

— Normal importing and exporting when invoked

ORACLE

4-18 Copyright © 2009, Oracle. All rights reserved.

Running the Wrapper

The command-line syntax is:
WRAP INAME=input file name [ONAME=output file name]

« The INAME argument is required.

 The default extension for the input file is . sgl, unless itis
specified with the name.

« The ONAME argument is optional.

 The default extension for output file is .plb, unless
specified with the ONAME argument.

Examples:

WRAP INAME=demo 04 hello.sql
WRAP INAME=demo 04 hello
WRAP INAME=demo 04 hello.sqgl ONAME=demo 04 hello.plb

ORACLE

4-19 Copyright © 2009, Oracle. All rights reserved.

Results of Wrapping

* Original PL/SQL source code in the input file:

CREATE PACKAGE banking IS
min bal := 100;
no funds EXCEPTION;

END banking;
/

 Wrapped code in the output file:

CREATE PACKAGE banking
wrapped

0l2abc463e ...
/

ORACLE

4 -20 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Wrapping

* You must wrap only the package body, not the package
specification.

 The wrapper can detect syntactic errors but cannot detect
semantic errors.

« The output file should not be edited. You maintain the
original source code and wrap again as required.

ORACLE

4-21 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Create and call overloaded subprograms
« Use forward declarations for subprograms
« Write package initialization blocks
 Maintain persistent package state
 Use the PL/SQL wrapper to wrap code

ORACLE

4-22 Copyright © 2009, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
* Using overloaded subprograms
« Creating a package Initialization block
 Using a forward declaration

* Using the WRAP utility to prevent the source code from
being deciphered by humans

ORACLE

4-23 Copyright © 2009, Oracle. All rights reserved.

Using Oracle-Supplied Packages
In Application Development

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* Describe how the DBMS OUTPUT package works

« Use UTL FILE to direct output to operating system files
« Use the HTP package to generate a simple Web page

« Describe the main features of UTL. MAIL

 Call the DBMS SCHEDULER package to schedule PL/SQL
code for execution

ORACLE

5-2 Copyright © 2009, Oracle. All rights reserved.

Using Oracle-Supplied Packages

The Oracle-supplied packages:
* Are provided with the Oracle server
« Extend the functionality of the database

 Enable access to certain SQL features that are normally
restricted for PL/SQL

For example, the DBMS OUTPUT package was originally
designed to debug PL/SQL programs.

ORACLE

5-3 Copyright © 2009, Oracle. All rights reserved.

List of Some Oracle-Supplied Packages

Here is an abbreviated list of some Oracle-supplied packages:
e DBMS ALERT

e DBMS LOCK

e DBMS SESSION

e DBMS OUTPUT

e HTP

e UTL FILE

e UTL MAIL

e DBMS SCHEDULER

ORACLE

5-4 Copyright © 2009, Oracle. All rights reserved.

How the DBMS OUTPUT Package Works

The DBMS OUTPUT package enables you to send messages
from stored subprograms and triggers.
 PUT and PUT LINE place text in the buffer.

e GET LINE and GET LINES read the buffer.

« Messages are not sent until the sender completes.

e Use SET SERVEROUTPUT ON to display messages in
SQL*Plus and SQL Developer.

»

SQL Developer| Qutput

£2 SQL Puus

SET SERVEROUT ON [SIZE n]
\ EXEC proc

)

\\ SR\

5-5 Copyright © 2009, Oracle. All rights reserved.

Interacting with Operating System Files

The UTL FILE package extends PL/SQL programs to read
and write operating system text files. UTL FILE:

* Provides a restricted version of the operating system
stream file 1/O for text files

 Can access files in operating system directories defined by
a CREATE DIRECTORY statement. You can also use the
utl file dir database parameter.

~

T CREATE DIRECTORY
- my dir AS '/dlr' !.
SQL Developer u‘-‘"" JW:;'E':,: %//
EXEC proc f 45 Fﬂr’-‘ﬁl" >
I Z
K UTL FILE Operating system fily

ORACLE

5-6 Copyright © 2009, Oracle. All rights reserved.

File Processing Using the
UTL FILE Package

 Reading a file:

f:=FOPEN(dir,file,'r')l

Open for Get lines from

reading the text file
GET LINE (f,buf,len)

 Writing or appending to a file: Close the

PUT (£, buf) text file

Open for ,| Put lines into
write/append the text file

f:=FOPEN (dir, file, 'w')
f :=FOPEN (dir, file, 'a')

NO

ORACLE

5-7 Copyright © 2009, Oracle. All rights reserved.

Exceptions in the UTL FILE Package

You may have to handle one of these exceptions when using
UTL FILE subprograms:

e INVALID PATH
e INVALID MODE
e INVALID FILEHANDLE
e INVALID OPERATION
e READ ERROR
* WRITE ERROR
e INTERNAL ERROR
Other exceptions not in the UTL FILE package are:
e NO DATA FOUND and VALUE ERROR

ORACLE

5-8 Copyright © 2009, Oracle. All rights reserved.

FOPEN and IS OPEN Function Parameters

FUNCTION FOPEN (location IN VARCHAR2,
filename IN VARCHAR2,
open mode IN VARCHAR2)

RETURN UTL FILE.FILE TYPE;

FUNCTION IS OPEN (file IN FILE TYPE)
RETURN BOOLEAN;

Example:

CREATE PROCEDURE read file(dir VARCHAR2, filename
VARCHAR2) IS file UTL FILE.FILE TYPE;

BEGIN
IF NOT UTL FILE.IS OPEN(file) THEN
file := UTL FILE.FOPEN (dir, filename, 'R');
END IF;
END read file;

ORACLE

5-9 Copyright © 2009, Oracle. All rights reserved.

Using UTL FILE:. Example

CREATE OR REPLACE PROCEDURE sal status(
dir IN VARCHAR2, filename IN VARCHAR2) IS
file UTL FILE.FILE TYPE;
CURSOR empc IS
SELECT last name, salary, department id
FROM employees ORDER BY department id;

newdeptno employees.department id%TYPE;

olddeptno employees.department id%TYPE := O0;
BEGIN
file:= UTL_ FILE.FOPEN (dir, filename, 'w');
UTL FILE.PUT LINE(file,
'REPORT: GENERATED ON ' || SYSDATE);
UTLEFILE.NEWELINE (£ile) ;| ...

ORACLE

5-10 Copyright © 2009, Oracle. All rights reserved.

Using UTL FILE:. Example

FOR emp rec IN empc LOOP
IF emp rec.department id <> olddeptno THEN
UTL FILE.PUT LINE (file,

'DEPARTMENT: ' || emp rec.department id);
UTL FILE.NEW LINE (file);
END IF;
UTL FILE.PUT LINE (file,
' EMPLOYEE: ' || emp rec.last name ||
' earns: ' | emp rec.salary);
olddeptno := emp rec.department id;
UTL FILE.NEW LINE (file);
END LOOP;

UTL FILE.PUT LINE(file,'*** END OF REPORT ***!');

[UTL_FILE.FCLOSE l(file) ;
EXCEPTION

WHEN| UTL FILE.INVALID FILEHANDLE| THEN
RAI£; ;;;5;;;;;;; ;;E;;;-;;;;;,'Invalid File.');

WHEN |[UTL FILE.WRITE ERROR | THEN
RAISE APPLICATION ERROR (-20002, 'Unable to write

to file');
END sal status;
/

ORACLE

5-11 Copyright © 2009, Oracle. All rights reserved.

Generating Web Pages with the HTP Package

HTP package procedures generate HTML tags.
The HTP package is used to generate HTML documents
dynamically and can be invoked from:

— A browser using Oracle HTTP Server and PL/SQL Gateway
(mod plsgl) services

— A SQL Developer script to display HTML output

-

_

Oracle HTTP Oracle \
Server S gak SQL scrlpt
E %
. [»
Web client SQL Developer
mod plsqgl & 2 :
== # R p ZF
= 2 Generated @/
ufre HTML /

-12

Copyright © 2009, Oracle. All rights reserved.

ORACLE

Using the HTP Package Procedures

 (Generate one or more HTML tags. For example:

htp.bold('Hello') ; -- Hello
htp.print ('Hi World'); -- Hi World

e Are used to create a well-formed HTML document:

BEGIN -- Generates:
htp.htmlOpen; --------- > <HTML>

htp.headOpen; --------- > <HEAD>
htp.title('Welcome'); --> <TITLE>Welcome</TITLE>
htp.headClose; --------- > </HEAD>

htp.bodyOpen; --------- > <BODY>

htp.print ('My home page'); My home page
htp.bodyClose; --------- > </BODY>

htp.htmlClose; --------- > </HTML>

END ;

ORACLE

5-13 Copyright © 2009, Oracle. All rights reserved.

Creating an HTML File

To create an HTML file, perform the following steps:
1. Create a SQL script with the following commands:

SET SERVEROUTPUT ON

ACCEPT procname PROMPT "Procedure: "
EXECUTE &procname

EXECUTE owa util.showpage

UNDEFINE proc

2. Load and execute the script in SQL Developer, supplying
values for substitution variables.

3. Select, copy, and paste the HTML text that is generated to
an HTML file.

4. Open the HTML file in a browser.

ORACLE

5-14 Copyright © 2009, Oracle. All rights reserved.

Using UTL MAIL

The UTL MAIL package:

e |s a utility for managing email that includes such commonly
used email features as attachments, CC, BCC, and return
receipt

 Requires the SMTP OUT SERVER database initialization
parameter to be set

* Provides the following procedures:
— SEND for messages without attachments
— SEND ATTACH RAW for messages with binary attachments

— SEND ATTACH VARCHAR2 for messages with text
attachments

ORACLE

5-15 Copyright © 2009, Oracle. All rights reserved.

Installing and Using UTL MATIL

e AS SYSDBA.:
— Setthe SMTP OUT SERVER (requires DBMS restart).

ALTER SYSTEM SET SMTP OUT SERVER='smtp.server.com'
SCOPE=SPFILE

— Install the UTL MATIL package.

@? /rdbms/admin/utlmail.sql
@? /rdbms/admin/prvtmail.plb

* As adeveloper, invoke a UTL. MAIL procedure:

BEGIN

UTL MAIL.SEND('otn@oracle.com', 'user@oracle.com',
message => 'For latest downloads visit OTN',
subject => 'OTN Newsletter');

END ;

ORACLE

5-16 Copyright © 2009, Oracle. All rights reserved.

Sending Email with a Binary Attachment

Use the UTL MATIL.SEND ATTACH RAW procedure:

CREATE OR REPLACE PROCEDURE send mail logo IS
BEGIN
UTL MAIL.SEND ATTACH RAW (
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',
subject => 'Oracle Logo',
mime type => 'text/html'
attachment => get image('oracle.gif'),
att inline => true,
att mime type => 'image/gif',
att filename => 'oralogo.gif');

END;
/

ORACLE

5-17 Copyright © 2009, Oracle. All rights reserved.

Sending Email with a Text Attachment

Use the UTL MAIL.SEND ATTACH VARCHAR2 procedure:

CREATE OR REPLACE PROCEDURE send mail file IS
BEGIN
UTL MAIL.SEND ATTACH VARCHAR2 (
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',
subject => 'Oracle Notes',
mime type => 'text/html'
attachment => get file('notes.txt'),
att inline => false,
att mime type => 'text/plain’,
att filename => 'notes.txt!');

END;
/

ORACLE

5-19 Copyright © 2009, Oracle. All rights reserved.

DBMS SCHEDULER Package

The database scheduler comprises several components to
enable jobs to be run. Use the DBMS SCHEDULER package to

create each job with a:
 Unique job name
 Program (“what” should be executed)
« Schedule (“when” it should run)

@ Job [Schedule]
! :
@gumer@ @gumer@ -- 7!

Window

Job class

ORACLE

5-21 Copyright © 2009, Oracle. All rights reserved.

Creating a Job

A job can be created in several ways by using a combination of
In-line parameters, named Programs, and named

Schedules. You can create a job with the CREATE JOB
procedure by:

e Using in-line information with the “what” and the schedule
specified as parameters

 Using a named (saved) program and specifying the
schedule in-line

« Specifying what should be done in-line and using a named
Schedule

 Using named Program and Schedule components

Note: Creating a job requires the CREATE JOB system
privilege.

ORACLE

5-23 Copyright © 2009, Oracle. All rights reserved.

Creating a Job with In-Line Parameters

Specify the type of code, code, start time, and frequency of the
job to be run in the arguments of the CREATE JOB procedure.

Here is an example that schedules a PL/SQL block every hour:

BEGIN
DBMS SCHEDULER.CREATE JOB (
job name => 'JOB NAME',
job type => 'PLSQL BLOCK',
job action => 'BEGIN ...; END;',
start date => SYSTIMESTAMP,
repeat interval=>'FREQUENCY=HOURLY; INTERVAL=1",
enabled => TRUE) ;
END ;

/

ORACLE

5-24 Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Program

e Use CREATE PROGRAM to create a program:

BEGIN
DBMS SCHEDULER.CREATE PROGRAM (
program name => 'PROG NAME',
program type => 'PLSQL BLOCK',
program action => 'BEGIN ...; END;');
END ;

 Use the overloaded CREATE JOB procedure with its
program name parameter:

BEGIN
DBMS SCHEDULER.CREATE JOB('JOB NAME',
program name => 'PROG NAME',
start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
enabled => TRUE) ;
END ;

ORACLE

5-25 Copyright © 2009, Oracle. All rights reserved.

Creating a Job for a Program with Arguments

 Create a program:

DBMS SCHEDULER.CREATE PROGRAM (
program name => 'PROG NAME',
program type => 'STORED PROCEDURE',
program action => 'EMP REPORT') ;

e Define an argument:

DBMS SCHEDULER.DEFINE PROGRAM ARGUMENT (
program name => 'PROG NAME',
argument name => 'DEPT ID',
argument position=> 1, argument type=> 'NUMBER',
default value => '50');

« Create a job specifying the number of arguments:

DBMS SCHEDULER.CREATE JOB('JOB NAME', program name
=> 'PROG NAME', start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
number of arguments => 1, enabled => TRUE) ;

ORACLE

5-26 Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Schedule

« Use CREATE SCHEDULE to create a schedule:

BEGIN
DBMS SCHEDULER.CREATE SCHEDULE ('SCHED NAME',
start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
end date => SYSTIMESTAMP +15);
END ;

 Use CREATE JOB by referencing the schedule in the
schedule name parameter:

BEGIN
DBMS SCHEDULER.CREATE JOB('JOB NAME',
schedule name => 'SCHED NAME',
job_type => 'PLSQL BLOCK',

job_action => 'BEGIN ...; END;'
enabled => TRUE) ;
END;

ORACLE

5-27 Copyright © 2009, Oracle. All rights reserved.

Setting the Repeat Interval for a Job

« Using a calendaring expression:

repeat interval=> 'FREQ=HOURLY; INTERVAL=4'
repeat interval=> 'FREQ=DAILY'
repeat interval=> 'FREQ=MINUTELY; INTERVAL=15"
repeat interval=> 'FREQ=YEARLY;
BYMONTH=MAR, JUN, SEP, DEC;
BYMONTHDAY=15"

 Using a PL/SQL expression:

repeat interval=> 'SYSDATE + 36/24"
repeat interval=> 'SYSDATE + 1°'
repeat interval=> 'SYSDATE + 15/(24*60) '

ORACLE

5-28 Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Named Program and
Schedule

* Create a named program called PROG NAME by using the
CREATE PROGRAM procedure.

* Create a named schedule called SCHED NAME by using
the CREATE SCHEDULE procedure.

 Create a job referencing the named program and
schedule:

BEGIN
DBMS SCHEDULER.CREATE JOB('JOB NAME',
program name => 'PROG NAME',
schedule name => 'SCHED NAME',
enabled => TRUE) ;
END;

/

ORACLE

5-29 Copyright © 2009, Oracle. All rights reserved.

Managing Jobs

* Runajob:
DBMS SCHEDULER.RUN JOB ('SCHEMA.JOB NAME') ;

e Stop a job:
DBMS SCHEDULER.STOP JOB ('SCHEMA.JOB NAME') ;

« Drop ajob even if it is currently running:
DBMS SCHEDULER.DROP JOB('JOB NAME', TRUE);

ORACLE

5-30 Copyright © 2009, Oracle. All rights reserved.

Data Dictionary Views

 [DBA | ALL | USER] SCHEDULER JOBS

 [DBA | ALL | USER] SCHEDULER RUNNING JOBS

e [DBA | ALL] SCHEDULER JOB CLASSES

e [DBA | ALL | USER] SCHEDULER JOB_LOG
 [DBA | ALL | USER] SCHEDULER JOB RUN DETAILS
e [DBA | ALL | USER] SCHEDULER PROGRAMS

ORACLE

5-31 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

 Use various preinstalled packages that are provided by the
Oracle server
« Use the following packages:
— DBMS OUTPUT to buffer and display text
— UTL FILE to write operating system text files
— HTP to generate HTML documents
— UTL_ MAIL to send messages with attachments
— DBMS SCHEDULER to automate processing

* Create packages individually or by using the catproc.sqgl
script

ORACLE

5-32 Copyright © 2009, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
 Using UTL FILE to generate a text report

« Using HTP to generate a Web page report
e Using DBMS SCHEDULER to automate report processing

ORACLE

5-33 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL and Metadata

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe the execution flow of SQL statements

« Build and execute SQL statements dynamically using
Native Dynamic SQL (that is, with EXECUTE IMMEDIATE
statements)

 Compare Native Dynamic SQL with the DBMS SQL
package approach

 Use the DBMS METADATA package to obtain metadata

from the data dictionary as XML or creation DDL that can
be used to re-create the objects

ORACLE

6-2 Copyright © 2009, Oracle. All rights reserved.

Execution Flow of SQL

« All SQL statements go through various stages:
— Parse
— Bind
— EXxecute
— Fetch

« Some stages may not be relevant for all statements—for
example, the fetch phase is applicable to queries.

Note: For embedded SQL statements (SELECT, DML, COMMIT,

and ROLLBACK), the parse and bind phases are done at

compile time. For dynamic SQL statements, all phases are
performed at run time.

ORACLE

6-3 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL

Use dynamic SQL to create a SQL statement whose structure
may change during run time. Dynamic SQL.:

* Is constructed and stored as a character string within the
application

 |s a SQL statement with varying column data, or different
conditions with or without placeholders (bind variables)

 Enables data-definition, data-control, or session-control
statements to be written and executed from PL/SQL

* |s executed with Native Dynamic SQL statements or the
DBMS SQL package

ORACLE

6-4 Copyright © 2009, Oracle. All rights reserved.

Native Dynamic SQL

* Provides native support for dynamic SQL directly in the
PL/SQL language

* Provides the ability to execute SQL statements whose
structure is unknown until execution time

e |s supported by the following PL/SQL statements:
— EXECUTE IMMEDIATE
— OPEN-FOR
— FETCH
— CLOSE

ORACLE

6-5 Copyright © 2009, Oracle. All rights reserved.

Using the EXECUTE IMMEDIATE Statement

Use the EXECUTE IMMEDIATE statement for Native Dynamic
SQL or PL/SQL anonymous blocks:

EXECUTE IMMEDIATE dynamic string
[INTO {define variable

[, define variable]l ... | record}]
[USING [IN|OUT|IN OUT] bind argument

[, [IN|OUT|IN OUT] bind argument] ... 1;

e INTO Is used for single-row queries and specifies the

variables or records into which column values are
retrieved.

 TUSING is used to hold all bind arguments. The default
parameter mode is IN, if not specified.

ORACLE
6-6 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a DDL Statement

e Create atable:

CREATE PROCEDURE create table(
table name VARCHAR2, col specs VARCHAR2) IS
BEGIN

EXECUTE IMMEDIATE 'CREATE TABLE '||table name] |
' (" || col specs || ")';
END;
/

e Call example:

BEGIN
create table('EMPLOYEE NAMES',
'id NUMBER(4) PRIMARY KEY, name VARCHAR2 (40)');
END ;

/

ORACLE

6-7 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with DML Statements

 Delete rows from any table:

CREATE FUNCTION del rows(table name VARCHAR2)
RETURN NUMBER IS

BEGIN
EXECUTE IMMEDIATE 'DELETE FROM '| |table name;
RETURN SQL%ROWCOUNT;

END;

BEGIN DBMS OUTPUT.PUT LINE (
del rows ('EMPLOYEE NAMES') || ' rows deleted.');

END;

e |nsert a row into a table with two columns:

CREATE PROCEDURE add row(table name VARCHAR2,
id NUMBER, name VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'INSERT INTO '||table name| |
' VALUES (:1, :2)' USING id, name;
END;

ORACLE

6-8 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a Single-Row Query

Example of a single-row query:

CREATE FUNCTION get emp(emp id NUMBER)
RETURN employees%ROWTYPE IS
stmt VARCHAR2 (200) ;
emprec employees%ROWTYPE;
BEGIN
stmt := 'SELECT * FROM employees ' ||
'WHERE employee id = :id’';
EXECUTE IMMEDIATE stmt [INTO emprec| USING emp id;
RETURN emprec;
END ;
/

DECLARE

emprec employees%ROWTYPE := get emp(100) ;
BEGIN

DBMS OUTPUT.PUT LINE('Emp: '||emprec.last name);
END;

/
ORACLE

6-9 Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a Multirow Query

Use OPEN-FOR, FETCH, and CLOSE processing:

CREATE PROCEDURE list employees (deptid NUMBER) IS
TYPE emp refcsr IS REF CURSOR;
emp cv emp refcsr;
emprec employees%ROWTYPE;

stmt varchar2(200) := 'SELECT * FROM employees';
BEGIN
IF deptid IS NULL THEN OPEN emp cv FOR stmt;
ELSE
stmt := stmt || ' WHERE department id = :id';
OPEN emp cv FOR stmt USING deptid;
END IF;
LOOP

FETCH emp cv INTO emprec;
EXIT WHEN emp cv%NOTFOUND;
DBMS OUTPUT.PUT LINE (emprec.department id| |
' ' | |emprec.last name) ;
END LOOP;
CLOSE emp cvj;
END ;

ORACLE

6-10 Copyright © 2009, Oracle. All rights reserved.

Declaring Cursor Variables

- Declare a cursor type as REF CURSOR:

CREATE PROCEDURE process data IS
TYPE ref ctype IS REF CURSOR; -- weak ref cursor
TYPE emp ref ctype IS REF CURSOR -- strong
RETURN employees%ROWTYPE;

« Declare a cursor variable using the cursor type:

dept csrvar ref ctype;

emp csrvar emp ref ctype;

BEGIN
OPEN emp csrvar FOR SELECT * FROM employees;
OPEN dept csrvar FOR SELECT * from departments;
-- Then use as normal cursors

END ;

ORACLE

6-11 Copyright © 2009, Oracle. All rights reserved.

Dynamically Executing a PL/SQL Block

Execute a PL/SQL anonymous block dynamically:

CREATE FUNCTION annual sal (emp id NUMBER)
RETURN NUMBER IS
plsgl varchar2 (200) :=
'DECLARE ' | |
' emprec employees%ROWTYPE; '| |
'BEGIN ' |
' emprec := get emp(:empid); ' |
' :res := emprec.salary * 12; ' ||
'END; ';
result NUMBER;
BEGIN
EXECUTE IMMEDIATE plsql
USING IN emp id, OUT result;
RETURN result;
END ;

/
EXECUTE DBMS OUTPUT.PUT LINE (annual sal(100))

ORACLE

6-12 Copyright © 2009, Oracle. All rights reserved.

Using Native Dynamic SQL
to Compile PL/SQL Code

Compile PL/SQL code with the ALTER statement:

e ALTER PROCEDURE name COMPILE

e ALTER FUNCTION name COMPILE

e ALTER PACKAGE name COMPILE SPECIFICATION
e ALTER PACKAGE name COMPILE BODY

CREATE PROCEDURE compile plsql (name VARCHAR2,
plsgl type VARCHAR2, options VARCHAR2 := NULL) IS
stmt varchar2(200) := 'ALTER '|| plsql type ||
' '|| name || ' COMPILE';
BEGIN
IF options IS NOT NULL THEN
stmt := stmt || ' ' || options;
END IF;
EXECUTE IMMEDIATE stmt;
END ;
/

ORACLE

6-13 Copyright © 2009, Oracle. All rights reserved.

Using the DBMS SQL Package

The DBMS SQL package is used to write dynamic SQL in stored
procedures and to parse DDL statements. Some of the
procedures and functions of the package include:

e OPEN CURSOR

e PARSE
° BIND VARIABLE
e EXECUTE

e FETCH ROWS
e CLOSE CURSOR

ORACLE

6-14 Copyright © 2009, Oracle. All rights reserved.

Using DBMS SQL with a DML Statement

Example of deleting rows:

CREATE OR REPLACE FUNCTION delete all rows
(table name VARCHAR2) RETURN NUMBER IS
csr id INTEGER;

rows del NUMBER;
BEGIN
csr id := DBMS SQL.OPEN CURSOR;
DBMS SQL.PARSE (csr id,
'DELETE FROM '||table name, DBMS SQL.NATIVE) ;
rows del := DBMS SQL.EXECUTE (csr id);

DBMS SQL.CLOSE CURSOR (csr id);
RETURN rows del;
END;

/

CREATE table temp emp as select * from employees;
BEGIN

DBMS OUTPUT.PUT LINE ('Rows Deleted: ' ||

delete all rows('temp emp'));

END ;

/
ORACLE

6-15 Copyright © 2009, Oracle. All rights reserved.

Using DBMS SQL with a
Parameterized DML Statement

CREATE PROCEDURE insert row (table name VARCHAR2,
id VARCHAR2, name VARCHAR2, region NUMBER) IS

csr id INTEGER;
stmt VARCHAR2 (200) ;
rows added NUMBER;
BEGIN
stmt := 'INSERT INTO '| |table name|] |
' VALUES (:cid, :cname, :rid)';
csr id := DBMS SQL.OPEN CURSOR;

DBMS SQL.PARSE (csr id, stmt, DBMS SQL.NATIVE) ;
DBMS SQL.BIND VARIABLE (csr id, ':cid', id);

DBMS SQL.BIND VARIABLE(csr id, ':cname', name);
DBMS SQL.BIND VARIABLE(csr id, ':rid', region);

rows added := DBMS SQL.EXECUTE (csr id);

DBMS SQL.CLOSE CURSOR(csr id);

DBMS OUTPUT.PUT LINE (rows added||' row added');
END ;

/

ORACLE

6-16 Copyright © 2009, Oracle. All rights reserved.

Comparison of Native Dynamic SQL and the
DBMS SQL Package

Native Dynamic SQL.:
* |s easier to use than DBMS SQL

* Requires less code than DBMS SQL

 Enhances performance because the PL/SQL interpreter
provides native support for it

« Supports all types supported by static SQL in PL/SQL,
Including user-defined types

« Can fetch rows directly into PL/SQL records

ORACLE

6-17 Copyright © 2009, Oracle. All rights reserved.

DBMS METADATA Package

The DBMS METADATA package provides a centralized facility

for the extraction, manipulation, and resubmission of dictionary
metadata.

ORACLE

6-18 Copyright © 2009, Oracle. All rights reserved.

Metadata API

Processing involves the following steps:
1. Fetch an object’'s metadata as XML.
2. Transform the XML in a variety of ways (including
transforming it into SQL DDL).
3. Submit the XML to re-create the object.

ORACLE

6-19 Copyright © 2009, Oracle. All rights reserved.

Subprograms in DBMS METADATA

Name Description

OPEN Specifies the type of object to be retrieved, the version of its
metadata, and the object model. The return value is an opaque
context handle for the set of objects.

SET FILTER Specifies restrictions on the objects to be retrieved such as the
object name or schema

SET COUNT Specifies the maximum number of objects to be retrieved in a single
FETCH xxx call

GET QUERY Returns the text of the queries that will be used by FETCH xxx

SET PARSE ITEM Enables output parsing and specifies an object attribute to be parsed

and returned

ADD TRANSFORM Specifies a transform that FETCH xxx applies to the XML
representation of the retrieved objects

SET TRANSFORM_ PARAM, | Specifies parameters to the XSLT stylesheet identified by
SET REMAP PARAM transform handle

FETCH XXX Returns metadata for objects meeting the criteria established by
OPEN, SET FILTER

CLOSE Invalidates the handle returned by OPEN and cleans up the
associated state

ORACLE

6 - 20 Copyright © 2009, Oracle. All rights reserved.

FETCH xxx Subprograms

Name Description

FETCH XML This function returns the XML metadata for an object
as an XMLType.

FETCH DDL This function returns the DDL (either to create or drop
the object) into a predefined nested table.

FETCH CLOB This function returns the objects (transformed or not)
as a CLOB.

FETCH XML _ CLOB | This procedure returns the XML metadata for the
objects as a CLOB in an IN OUT NOCOPY parameter
to avoid expensive LOB copies.

ORACLE

6-21 Copyright © 2009, Oracle. All rights reserved.

SET FILTER Procedure

 Syntax:

PROCEDURE set filter

(handle IN NUMBER,
name IN VARCHAR2,
value IN VARCHAR2 | BOOLEAN | NUMBER,
object type path VARCHAR2

« Example:

DBMS METADATA.SET FILTER (handle, 'NAME', 'HR');

ORACLE

6-22 Copyright © 2009, Oracle. All rights reserved.

Filters

There are over 70 filters, which are organized into object type
categories such as:

 Named objects

« Tables
* Objects dependent on tables
 Index

 Dependent objects
 Granted objects
 Table data

e Index statistics
 Constraints

* All object types
 Database export

ORACLE

6-23 Copyright © 2009, Oracle. All rights reserved.

Examples of Setting Filters

Set up the filter to fetch the HR schema objects excluding the

object types of functions, procedures, and packages, as well as
any views that contain PAYROLL in the start of the view name:

DBMS METADATA.SET FILTER (handle, 'SCHEMA EXPR',
"IN (''PAYROLL'', ''HR'')');

DBMS METADATA.SET FILTER (handle, 'EXCLUDE PATH EXPR',
=1 '"FUNCTION'"'"') ;

DBMS METADATA.SET FILTER (handle, 'EXCLUDE PATH EXPR',
'=' 'PROCEDURE"''"') ;

DBMS METADATA.SET FILTER (handle, 'EXCLUDE PATH EXPR',
"= "PACKAGE'"'") ;

DBMS METADATA.SET FILTER (handle, 'EXCLUDE NAME EXPR',
'LIKE ''PAYROLL%''', 'VIEW');

ORACLE

6-24 Copyright © 2009, Oracle. All rights reserved.

Programmatic Use: Example 1

CREATE PROCEDURE example one IS

h NUMBER; thl NUMBER; th2 NUMBER;
doc sys.ku$ ddls;

BEGIN
h := DBMS METADATA.OPEN ('SCHEMA EXPORT') ; 4—{:)
DBMS METADATA.SET FILTER (h,'SCHEMA','HR');4——<:>
thl := DBMS METADATA.ADD TRANSFORM (h,

'MODIFY', NULL, 'TABLE');
DBMS METADATA.SET REMAP PARAM (thl, <« ®)
'REMAP TABLESPACE', 'SYSTEM', 'TBS1');
th2 :=DBMS METADATA.ADD TRANSFORM(h, 'DDL');
DBMS METADATA.SET TRANSFORM PARAM (th2,<
' SQLTERMINATOR', TRUE) ;
DBMS METADATA.SET TRANSFORM PARAM (th2,
'REF_CONSTRAINTS', FALSE, 'TABLE');
LOOP
doc := DBMS_METADATA.FETCH DDL(h); «—(7)
EXIT WHEN doc IS NULL;

END LOOP;
DBMS METADATA.CLOSE (h) ;
END;

ORACLE

6-25 Copyright © 2009, Oracle. All rights reserved.

Programmatic Use: Example 2

CREATE FUNCTION get table md RETURN CLOB IS

h NUMBER; -- returned by 'OPEN'

th NUMBER; -- returned by 'ADD TRANSFORM'
doc CLOB;
BEGIN

-- specify the OBJECT TYPE

h := DBMS METADATA.OPEN('TABLE') ;

-- use FILTERS to specify the objects desired
DBMS METADATA.SET FILTER (h, 'SCHEMA', 'HR') ;

DBMS METADATA.SET FILTER (h, 'NAME', 'EMPLOYEES') ;
-- request to be TRANSFORMED into creation DDL

th := DBMS METADATA.ADD TRANSFORM (h, 'DDL') ;
-- FETCH the object
doc := DBMS METADATA.FETCH CLOB (h) ;

-- release resources
DBMS_METADATA.CLOSE(h);
RETURN doc;

END;

/

ORACLE
6 -27 Copyright © 2009, Oracle. All rights reserved.

Browsing APIs

Name Description

GET XXX The GET XML and GET DDL functions return
metadata for a single named object.

GET DEPENDENT XXX This function returns metadata for a dependent
object.

GET GRANTED XXX This function returns metadata for a granted
object.

ORACLE

Where xxx IS; DDL Or XML

6-29 Copyright © 2009, Oracle. All rights reserved.

Browsing APIs: Examples

1. Getthe XML representation of HR . EMPLOYEES:

SELECT DBMS METADATA.GET XML
('"TABLE', 'EMPLOYEES', 'HR')

FROM dual;

2. Fetch the DDL for all object grants on HR . EMPLOYEES:

SELECT DBMS METADATA.GET DEPENDENT DDL
('OBJECT GRANT', 'EMPLOYEES', 'HR')

FROM dual;

3. Fetch the DDL for all system grants granted to HR:

SELECT DBMS METADATA.GET GRANTED DDL
('SYSTEM GRANT', 'HR')

FROM dual;

ORACLE

6 - 30 Copyright © 2009, Oracle. All rights reserved.

Browsing APIs: Examples

BEGIN

DBMS METADATA.SET TRANSFORM PARAM (
DBMS METADATA.SESSION TRANSFORM, @,
'STORAGE', false);

END ;

/

SELECT DBMS METADATA.GET DDL('TABLE',u.table name)

FROM user all tables u *—(::)

WHERE wu.nested = 'NO'

AND (u.iot type IS NULL OR u.iot type = 'IOT');

BEGIN

DBMS METADATA.SET TRANSFORM PARAM ('
DBMS METADATA.SESSION TRANSFORM, 'DEFAULT');
END;

/

ORACLE

6-31 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Explain the execution flow of SQL statements

 Create SQL statements dynamically and execute them
using either Native Dynamic SQL statements or the
DBMS SQL package

 Recognize the advantages of using Native Dynamic SQL
compared to the DBMS SQL package

 Use DBMS METADATA subprograms to programmatically
obtain metadata from the data dictionary

ORACLE

6-32 Copyright © 2009, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:

 Creating a package that uses Native Dynamic SQL to
create or drop a table and populate, modify, and delete
rows from a table

« Creating a package that compiles the PL/SQL code in your
schema

 Using DBMS METADATA to display the statement to
regenerate a PL/SQL subprogram

ORACLE

6 -33 Copyright © 2009, Oracle. All rights reserved.

Design Considerations for PL/SQL Code

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Use package specifications to create standard constants
and exceptions

 Write and call local subprograms

« Setthe AUTHID directive to control the run-time privileges
of a subprogram

« Execute subprograms to perform autonomous transactions
 Use bulk binding and the RETURNING clause with DML

 Pass parameters by reference using a NOCOPY hint
 Use the PARALLEL ENABLE hint for optimization

ORACLE

7-2 Copyright © 2009, Oracle. All rights reserved.

Standardizing Constants and Exceptions

Constants and exceptions are typically implemented using a
bodiless package (that is, in a package specification).
e Standardizing helps to:
— Develop programs that are consistent
— Promote a higher degree of code reuse
— Ease code maintenance
— Implement company standards across entire applications

e Start with standardization of:
— EXxception names
— Constant definitions

ORACLE

7-3 Copyright © 2009, Oracle. All rights reserved.

Standardizing Exceptions

Create a standardized error-handling package that includes all
named and programmer-defined exceptions to be used in the

application.

CREATE OR REPLACE PACKAGE error pkg IS
fk err EXCEPTION;
seq nbr err EXCEPTION;
PRAGMA EXCEPTION INIT (fk err, -2292);
PRAGMA EXCEPTION INIT (seq nbr err, -2277);

END error pkg;
/

ORACLE

7-4 Copyright © 2009, Oracle. All rights reserved.

Standardizing Exception Handling

Consider writing a subprogram for common exception handling
to:
« Display errors based on SQL.CODE and SQLERRM Vvalues for
exceptions
 Track run-time errors easily by using parameters in your
code to identify:
— The procedure in which the error occurred

— The location (line number) of the error

— RAISE APPLICATION ERROR using stack trace
capabilities, with the third argument set to TRUE

ORACLE

7-5 Copyright © 2009, Oracle. All rights reserved.

Standardizing Constants

For programs that use local variables whose values should not
change:

e Convert the variables to constants to reduce maintenance
and debugging

* Create one central package specification and place all
constants in it

CREATE OR REPLACE PACKAGE constant pkg IS

c_order received CONSTANT VARCHAR(2) := 'OR';
c_order shipped CONSTANT VARCHAR(2) := 'OS';
¢ min sal CONSTANT NUMBER(3) := 900;

END constant pkg;

ORACLE

7-6 Copyright © 2009, Oracle. All rights reserved.

Local Subprograms

 Alocal subprogram is a PROCEDURE Of FUNCTION
defined in the declarative section.

CREATE PROCEDURE employee sal(id NUMBER) IS

emp employees%ROWTYPE;

FUNCTION'EEEysalary VARCHAR2) RETURN NUMBER IS

BEGIN

RETURN salary * 0.825;

END tax;
BEGIN

SELECT * INTO emp

FROM EMPLOYEES WHERE employee id = id;

DBMS OUTPUT.PUT LINE('Tax: '||ftax|(emp.salary));
END;

 The local subprogram must be defined at the end of the
declarative section.

ORACLE

7-7 Copyright © 2009, Oracle. All rights reserved.

Definer’s Rights Versus Invoker’'s Rights

Definer’s rights: Invoker’s rights:
e Used prior to Oracle8i e Introduced in Oracle8i
 Programs execute with the Programs execute with the
privileges of the creating privileges of the calling user.
USer. e User requires privileges on
« User does not require the underlying objects that
privileges on underlying the procedure accesses.

objects that the procedure
accesses. User requires
privilege only to execute a
procedure.

ORACLE

7-8 Copyright © 2009, Oracle. All rights reserved.

Specifying Invoker’s Rights

Set AUTHID to CURRENT USER!

CREATE OR REPLACE PROCEDURE add dept (

id NUMBER, name VARCHAR2) AUTHID CURRENT USER| IS
BEGIN

INSERT INTO departments

VALUES (id,name,NULL, NULL) ;
END ;

When used with stand-alone functions, procedures, or
packages:

« Names used in queries, DML, Native Dynamic SQL, and
DBMS SQL package are resolved in the invoker’'s schema

e Calls to other packages, functions, and procedures are
resolved in the definer's schema

ORACLE

7-9 Copyright © 2009, Oracle. All rights reserved.

Autonomous Transactions

 Are independent transactions started by another main
transaction.

* Are specified with PRAGMA AUTONOMOUS TRANSACTION

PROCEDURE procl IS PROCEDURE proc2 IS
emp id NUMBER; PRAGMA
BEGIN

: AUTONOMOUS TRANSACTION;
emp id := 1234; =

COMMIT; dept id NUMBER := 90;
%:—’ INSERT ... @) BEGIN
— proc2; (@+— urDATE
O+ Egﬁﬁ o INSERT ...
END proc;.; @-—> COMMIT; -- Required
@--» END proc2;

ORACLE

7-10 Copyright © 2009, Oracle. All rights reserved.

Features of Autonomous Transactions

Autonomous transactions:
* Are independent of the main transaction
e Suspend the calling transaction until it is completed
* Are not nested transactions
« Do not roll back if the main transaction rolls back

 Enable the changes to become visible to other
transactions upon a commit

 Are demarcated (started and ended) by individual
subprograms and not by nested or anonymous PL/SQL
blocks

ORACLE

7-11 Copyright © 2009, Oracle. All rights reserved.

Using Autonomous Transactions

Example:

PROCEDURE bank trans(cardnbr NUMBER, loc NUMBER) IS
BEGIN

log usage (cardnbr, loc);

INSERT INTO txn VALUES (9001, 1000,...);
END bank trans;

PROCEDURE log usage (card id NUMBER, loc NUMBER)
IS

PRAGMA AUTONOMOUS TRANSACTION;
BEGIN

INSERT INTO usage

VALUES (card id, 1loc);

COMMIT;
END log usage;

ORACLE

7-12 Copyright © 2009, Oracle. All rights reserved.

RETURNING Clause

The RETURNING clause:

* Improves performance by returning column values with
INSERT, UPDATE, and DELETE Statements

e Eliminates the need for a SELECT statement

CREATE PROCEDURE update salary(emp id NUMBER) IS

name employees.last name%TYPE;
new sal employees.salary%TYPE;
BEGIN

UPDATE employees
SET salary = salary * 1.1
WHERE employee id = emp id
RETURNING last name, salary INTO name, new sal;
END update salary;

/

ORACLE

7-13 Copyright © 2009, Oracle. All rights reserved.

Bulk Binding

Binds whole arrays of values in a single operation, rather than
using a loop to perform a FETCH, INSERT, UPDATE, and

DELETE operation multiple times

PL/SOL run-time engine SOL enqgine
g g
4
PL/SQL block Procedural Z e
. statement tateQment
FORALL j IN 1..1000 executor S
INSERT (id, executor
dates) m >
VALUES (ids(j), 7 4

dates(j));

ORACLE

7-14 Copyright © 2009, Oracle. All rights reserved.

Using Bulk Binding

Keywords to support bulk binding:

« The FORALL keyword instructs the PL/SQL engine to bulk

bind input collections before sending them to the SQL
engine.

FORALL index IN lower bound .. upper bound
[SAVE EXCEPTIONS]
sql statement;

e The BULK COLLECT keyword instructs the SQL engine to

bulk bind output collections before returning them to the
PL/SQL engine.

. BULK COLLECT INTO
collection name[,collection name]

ORACLE

7-15 Copyright © 2009, Oracle. All rights reserved.

Bulk Binding FORALL: Example

CREATE PROCEDURE raise salary(percent NUMBER) IS
TYPE numlist IS TABLE OF NUMBER
INDEX BY BINARY INTEGER;
id numlist;

BEGIN
id(1) := 100; id(2) := 102;
id(3) := 104; id(4) := 110;
-- bulk-bind the PL/SQL table
FORALL i IN id.FIRST .. id.LAST

UPDATE employees
SET salary = (1 + percent/100) * salary
WHERE manager id = id(i);
END ;
/

EXECUTE raise salary(10)

ORACLE

7-16 Copyright © 2009, Oracle. All rights reserved.

Using BULK COLLECT INTO with Queries

The SELECT statement has been enhanced to support the
BULK COLLECT INTO syntax.

Example:

CREATE PROCEDURE get departments (loc NUMBER) IS
TYPE dept tabtype IS
TABLE OF departments%ROWTYPE;
depts dept tabtype;
BEGIN
SELECT * BULK COLLECT INTO depts
FROM departments
WHERE location id = loc;
FOR I IN 1 .. depts.COUNT LOOP
DBMS OUTPUT.PUT LINE (depts(i) .department id
||* '||depts (i) .department name) ;
END LOOP;
END;

ORACLE

7-18 Copyright © 2009, Oracle. All rights reserved.

Using BULK COLLECT INTO with Cursors

The FETCH statement has been enhanced to support the BULK
COLLECT INTO syntax.

Example:

CREATE PROCEDURE get departments (loc NUMBER) IS
CURSOR dept csr IS SELECT * FROM departments
WHERE location id = loc;
TYPE dept tabtype IS TABLE OF dept csr%ROWTYPE;
depts dept tabtype;
BEGIN
OPEN dept csr;
FETCH dept csr BULK COLLECT INTO depts;
CLOSE dept:csr;
FOR I IN 1 .. depts.COUNT LOOP
DBMS OUTPUT.PUT LINE (depts (i) .department id
||* '||depts (i) .department name) ;
END LOOP;
END ;

ORACLE

7-19 Copyright © 2009, Oracle. All rights reserved.

Using BULK COLLECT INTO
with a RETURNING Clause

Example:

CREATE PROCEDURE raise salary(rate NUMBER) IS
TYPE emplist IS TABLE OF NUMBER;
TYPE numlist IS TABLE OF employees.salary%TYPE
INDEX BY BINARY INTEGER;
emp ids emplist := emplist(100,101,102,104);
new sals numlist;

BEGIN
FORALL i IN emp ids.FIRST .. emp ids.LAST
UPDATE employees
SET commission pct = rate * salary

WHERE employee id = emp ids (i)

RETURNING salary BULK COLLECT INTO new sals;
FOR i IN 1 .. new sals.COUNT LOOP ...

END;

ORACLE

7-20 Copyright © 2009, Oracle. All rights reserved.

Using the NOCOPY Hint

The NOCOPY hint:

 |s arequestto the PL/SQL compiler to pass OUT and IN
OUT parameters by reference rather than by value

 Enhances performance by reducing overhead when
passing parameters

DECLARE
TYPE emptabtype IS TABLE OF employees%ROWTYPE;
emp tab emptabtype;
PROCEDURE populate(tab IN OUT |[NOCOPY|emptabtype)

IS BEGIN ... END;
BEGIN

populate (emp tab) ;
END;

/

ORACLE

7-21 Copyright © 2009, Oracle. All rights reserved.

Effects of the NOCOPY Hint

« If the subprogram exits with an exception that is not

handled:

— You cannot rely on the values of the actual parameters
passed to a NOCOPY parameter

— Any incomplete modifications are not “rolled back”

 The remote procedure call (RPC) protocol enables you to
pass parameters only by value.

ORACLE

7-22 Copyright © 2009, Oracle. All rights reserved.

NOCOPY Hint Can Be Ighored

The NOCOPY hint has no effect If:

 The actual parameter:
— Is an element of an index-by table
— Is constrained (for example, by scale or NOT NULL)

— And formal parameter are records, where one or both
records were declared by using $ROWTYPE or $TYPE, and

constraints on corresponding fields in the records differ
— Requires an implicit data type conversion

 The subprogram is involved in an external or remote
procedure call

ORACLE

7-23 Copyright © 2009, Oracle. All rights reserved.

PARALLEL ENABLE Hint

The PARALLEL ENABLE hint:
« Can be used in functions as an optimization hint

CREATE OR REPLACE FUNCTION f2 (pl NUMBER)
RETURN NUMBER |[PARALLEL ENABLE | IS

BEGIN
RETURN pl * 2;

END f£f2;

* |Indicates that a function can be used in a parallelized
guery or parallelized DML statement

ORACLE

7-24 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

* Create standardized constants and exceptions using
packages

 Develop and invoke local subprograms

e Control the run-time privileges of a subprogram by setting
the AUTHID directive

 Execute autonomous transactions

e Use the RETURNING clause with DML statements, and
bulk binding collections with the FORALL and BULK
COLLECT INTO clauses

 Pass parameters by reference using a NOCOPY hint
 Enable optimization with PARALLEL ENARLE hints

ORACLE

7-25 Copyright © 2009, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
 Creating a package that uses bulk fetch operations

e Creating a local subprogram to perform an autonomous
transaction to audit a business operation

e Testing AUTHID functionality

ORACLE

7-26 Copyright © 2009, Oracle. All rights reserved.

Managing Dependencies

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Track procedural dependencies

* Predict the effect of changing a database object on stored
procedures and functions

« Manage procedural dependencies

ORACLE

8-2 Copyright © 2009, Oracle. All rights reserved.

Understanding Dependencies

Dependent objects Referenced objects

Function

Database trigger
Package specification

Function

Procedure
Procedure

Sequence
Package body >

Synonym
Package specification

Table

User-defined object _ _
and collection types User-defined object
and collection types
View
View

ORACLE

8-3 Copyright © 2009, Oracle. All rights reserved.

Dependencies

-~

Copyright © 2009, Oracle. All rights reserved.

View or
Procedure procedure Table
XXKXXXKKXXKKX
XOOOOXXXXXXXX ; DifECt ; Dirzct
VYAV e TG eoendenc
| ——— | |
VWV VWYY L~
VY Referenced
Dependent
Dependent Indirect Referenced
\ dependency /
ORACLE

ORACLE

8-5

Local Dependencies

(Procedure

View

Procedure
XXXXXXXXX XXX XX VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXXXXXXXXXXX
XXXXXXXXXXX XXX > VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXXXXXXXXXXX
XXXXXXXXX XXX XX VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXXXXXXXXXXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV

Table

_ Local references

>

Direct local
dependency

Copyright © 2009, Oracle. All rights reserved.

Local Dependencies

(Procedure Procedure View Table
XXXXXXXXX XXX XX VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXXXXXXXXXXX
XXXXXXXXXXXXXX VVVVVVVVVVVVVY [r— —
VVVVVVVVVVVVVV XXXXXXXXXXXXXX
XXXXXXXXX XXX XX VVVVVVVVVVVVVV
VVVVVVVVVVVVVV XXXXXXXXXXXXXX //
VVVVVVVVVVVVVV VVVVVVVVVVVVVV ﬂ
INVALID INVALID INVALID
__Local references J

>
Direct local Definition
dependency change

The Oracle server implicitly recompiles any INVALID object
when the object is next called.

ORACLE

8-6 Copyright © 2009, Oracle. All rights reserved.

ORACLE

8-7

A Scenario of Local Dependencies

ADD EMP
procedure

EMP VW View

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV

QUERY EMP
procedure

XXXXX XX XXX XX XXX XXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV

EMPLOYVEE_ID | LasT_MamE | FIRsT_mMamE | Ema DEPARTMENT _ID
1 100 king Steven SkIMG an
g 101 kochhar Meena MESCHHAR a0
3 102 De Haan Lex LDEHAA N 5]
4 1035 Hunold Alexander AHUMOLD a0
5 104 Ernst Bruce BERMET &0
EMPLOYEES table
EMPLOYVEE_ID | FIRST_MaME |8 LasT_mame | Emai PHOME_MUMBER
1 100 Steven King SKING 515.123.4567
z 101 Meena Kochhar MEOCHHAR 515123 4568
3 102 Lex De Haan LDEHAAN 515.123.4569
4 103 Alexander Hunold AHUMOLD 590,423 4567
5 104 Bruce Ernst BERNST 590.423.4568

Copyright © 2009, Oracle. All rights reserved.

Displaying Direct Dependencies by Using
USER DEPENDENCIES

SELECT name, type, referenced name, referenced type
FROM user dependencies
WHERE referenced name IN ('EMPLOYEES') ;

I M E TVFE REFEREMCED_MAME |[§ REFEREMCED_TYPE
1 SAL_STATUS PROCEDURE EMPLOYEES TAEBLE
2 WEE_EMP FROCEDURE EMPLOVEES TAELE
5 EMPLOYEE_SAL PROCEDURE EMPLOYEES TAEBLE
4 UPDATE_SALARY PROCEDURE EMPLOYVEES TAELE
S RAISE_SALARY PROCEDURE EMPLOYEES TAEBLE
6 EMP_DETAILS_VIEW VIEW EMPLCVEES TAELE
7 SECURE_EMPLOYEES TRIGGER EMPLOYEES TAEBLE
& UPDATE JOB_HISTORY TRIGGER. EMPLOYEES TAELE
5 EMP_PK.C PACKAGE EMPLOYEES TAEBLE

ORACLE

8-8 Copyright © 2009, Oracle. All rights reserved.

Displaying Direct and Indirect Dependencies

1. Runthe utldtree.sqgl script that creates the objects
that enable you to display the direct and indirect
dependencies.

2. Execute the DEPTREE FILL procedure.

EXECUTE deptree fill ('TABLE', 'SCOTT', 'EMPLOYEES')

ORACLE

8-9 Copyright © 2009, Oracle. All rights reserved.

Displaying Dependencies

The DEPTREE View:

SELECT nested level, type, name
FROM deptree
ORDER BY seq#;

MESTED_LEWEL ([§ TvrRE MAME
0 TABELE EMPLOYEES
1 PROCEDURE 541 STATUS
1 PROCEDLURE WEE_EMP
1 PROCEDURE EMPLOYEE_SAL
1 PROCEDURE UPDATE_SALARY
1 PROCEDURE RAISE_SALARY
1 VI EMP_DETAILS _IEW
1 TRIGGER SECURE_EMPLOYEES
1 TRIGGER UPDATE_JOB_HISTORY
1 PACKAGE EMP_PEG

L R N = T o (R "R 1 B L I)

=
=

ORACLE

8-10 Copyright © 2009, Oracle. All rights reserved.

Another Scenario of Local Dependencies

XXXXXXXXXXXXXXXXXXXXX
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVVVVVV

REDUC E_SAL VVVVVVVVVVVVVVVVVVVVV
VVVVVVXXXXXXXXXXXXXXX
p r O C ed u r e XXXXXXXXXXXXXXXXXXXXX

VVVVVVVVVVVVVVVVVVVVV

RAISE SAL
p r O C ed u r e XXXX XX XX XXX XX XXXXXXXX

VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVV

EMPLOYEES table VVVVVVVVVVVVVVVVVVVVY

VVVVVVXXXXXXXXXXXXXXX

EMPLOYEE D [{ LasT_NaME[H JoBD [§ saLarr PV
1 100 King AD_PRES 24000
Z 101 Kochhar AD_WP 15700
3 102 De Haan AD_WP 15700
4 103 Hunold IT_PROG 5500
= 104 Ernst IT_PROGC 5000

ORACLE

8-11 Copyright © 2009, Oracle. All rights reserved.

A Scenario of Local Naming Dependencies

QUERY_EMP]
EMPLOYEES public synonym
procedure
EMPLOYEE_ID | LasT_Mame (f JjoB_iD A LR
XXXXXXXXXXXXXXXX XXX XX 1 1|:”:| F:\.|r|g AD_PRES 24|:”:”:|
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVV z 101 Kochhar AD_WP 15700
VVVVVVVVVVVVVVVVVVVVV
VVVVVVVVVVVVVVVVVVVVV ' 3 102 De Haan AD_WP 1700
VVVVVVXXXXXXXXXXXXXXX 4 103 Hunold IT_PROG 3900
XXXXXXXXXXXXXXXXXXKXX
VVVVVVVVVVVVVVVVVVVVV g 104 Ernst IT_PRCnS &000
EMPLOYEES
table
EMPLOVEE_ID | LasT_mamE (B joBD ShLART
1 100 king AD_PRES 24000
g 101 kachhar AD_VP 18700
3 102 De Haan AD VP 13700
4 103 Hunaold IT_PROG S9a0n
g 104 Ernist IT_PROG aO000

ORACLE

8-12 Copyright © 2009, Oracle. All rights reserved.

Understanding Remote Dependencies

o

~

rocedure Procedure View Table
KXXXXXXXXXXXXX
U VVVVVVVVVVVVVV
POULLEEUUCU LU OE 0. 0.90.0.0.90.0.0.90.0.0.0.0.0.4
KXXAXXXXXXXXXXX
VVVVVVVVVVVVVV N EtW 0 r k VVVVVVVVVVVVVV
0 9.0.0.0.90.0.0.90.0.0.0.0.0.4 XXXXXXXXXXXXXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV
) 9.0.0.0.90.0.0.90.0.0.0.0.0.4
VVVVVVVVVVVVVV f\/

\ Local and remote references /
> _/\/_>

Direct local
dependency

Direct remote
dependency

ORACLE

8-13 Copyright © 2009, Oracle. All rights reserved.

o

Understanding Remote Dependencies

~

rocedure Procedure View Table
XXXXXX XXX XXX XX
VVVVVVVVVVVVVV VVVVVVVVVVVVVVY
XXXXXX XXX XXX XX
VVVVVVVVVVVVVV —/\/—V C\icccccééccccé > —p>
XXXXXX XXX XXX XX XXXXXXXXXXXXXX
VVVVVVVVVVVVVV N etW O r k VVVVVVVVVVVVVV
XXXXXX XXX XXX XX XXXXXXXXXXXXXX
VVVVVVVVVVVVVV VVVVVVVVVVVVVV /
XXXXXX XXX XXX XX
VVVVVVVVVVVVVV f\/ /\/-/
VALID INVALID INVALID
\ Local and remote references /
> _/\/_p
Direct local Direct remote Definition
dependency dependency change

ORACLE

8-14 Copyright © 2009, Oracle. All rights reserved.

Concepts of Remote Dependencies

Remote dependencies are governed by the mode that is
chosen by the user:

e TIMESTAMP checking
e SIGNATURE checking

ORACLE

8-15 Copyright © 2009, Oracle. All rights reserved.

REMOTE DEPENDENCIES MODE Parameter

Setting REMOTE DEPENDENCIES MODE:

e Asan init.ora parameter
REMOTE DEPENDENCIES MODE

value

e At the system level
ALTER SYSTEM SET

REMOTE DEPENDENCIES MODE value

e At the session level
ALTER SESSION SET

REMOTE DEPENDENCIES MODE value

ORACLE

8-16 Copyright © 2009, Oracle. All rights reserved.

Remote Dependencies and

s

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

o

Time Stamp Mode

—p

N\

Network

/\/>

Network

o

Procedure

View

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX

Table

VVVVVVVVVVVVVV

/

Copyright © 2009, Oracle. All rights reserved.

ORACLE

Remote Dependencies and

s

Procedure

XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

o

Time Stamp Mode

—p

N\

Network

VALID

J

8-18

/\/>

Network

o

Procedure

View

VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV
XXXXXXXXXXXXXX
VVVVVVVVVVVVVV

~

Table

INVALID

o

INVALID

7

/

Copyright © 2009, Oracle. All rights reserved.

Definition
change

ORACLE

Remote Procedure B
Compiles at 8:00 AM

Remote procedure B

Compiles

Valid

ORACLE

8-19 Copyright © 2009, Oracle. All rights reserved.

Local Procedure A
Compiles at 9:00 AM

Local procedure A Remote procedure B
Time stamp Record time Time stamp
of A stamp of B of B
Valid Valid
ORACLE

8-20 Copyright © 2009, Oracle. All rights reserved.

-21

Execute Procedure A

Local procedure A

Remote procedure B

"\

Time stamp
comparison

|/

Time stamp Time stamp | Time stamp
of A of B of B
Execute B
Valid Valid
ORACLE

Copyright © 2009, Oracle. All rights reserved.

Remote Procedure B
Recompiled at 11:00 AM

Remote procedure B

Compiles

Valid

ORACLE

8-22 Copyright © 2009, Oracle. All rights reserved.

Execute Procedure A

Local procedure A Remote procedure B
Time stamp
comparison
Time stamp Time stamp Time stamp
of A of B of B
ERROR
Vai% Invalid valid
ORACLE

8-23 Copyright © 2009, Oracle. All rights reserved.

Sighature Mode

 The signature of a procedure is the:
— Name of the procedure
— Data types of the parameters
— Modes of the parameters

 The signature of the remote procedure is saved in the local
procedure.

 When executing a dependent procedure, the signature of
the referenced remote procedure is compared.

ORACLE

8-24 Copyright © 2009, Oracle. All rights reserved.

Recompiling a PL/SQL
Program Unit

Recompilation is handled:

e Automatically through implicit run-time recompilation
« Through explicit recompilation with the ALTER statement

ALTER PROCEDURE [SCHEMA.]procedure name COMPILE;

ALTER FUNCTION [SCHEMA.] function name COMPILE;

ALTER PACKAGE [SCHEMA.] package name
COMPILE [PACKAGE | SPECIFICATION | BODY];

ALTER TRIGGER trigger name [COMPILE [DEBUG]] ;

ORACLE

8-25 Copyright © 2009, Oracle. All rights reserved.

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

 The referenced object is dropped or renamed
 The data type of the referenced column is changed
 The referenced column is dropped

 Areferenced view is replaced by a view with different
columns

 The parameter list of a referenced procedure is modified

ORACLE

8-26 Copyright © 2009, Oracle. All rights reserved.

Successful Recompilation

Recompiling dependent procedures and functions is
successful if:

 The referenced table has new columns
 The data type of referenced columns has not changed

e A private table is dropped, but a public table that has the
same name and structure exists

« The PL/SQL body of a referenced procedure has been
modified and recompiled successfully

ORACLE

8 -27 Copyright © 2009, Oracle. All rights reserved.

Recompilation of Procedures

Minimize dependency failures by:
« Declaring records with the $ROWTYPE attribute

« Declaring variables with the $TYPE attribute
 Querying with the SELECT * notation
e Including a column list with INSERT statements

ORACLE

8-28 Copyright © 2009, Oracle. All rights reserved.

Packages and Dependencies

(" g . \
Package specification
Stand-alone > Procedure A Valid
procedure :
declaration
. y,
Valid

4)

Package body

Procedure A
definition

_ Definition changed -

ORACLE

8-29 Copyright © 2009, Oracle. All rights reserved.

Packages and Dependencies

(" g . \
Package specification

Procedure A Valid
declaration

&

4)

Package body

&

Stand-alone Procedure A

o Invalid
procedure definition

Definition \ /

changed

ORACLE

8-30 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Keep track of dependent procedures

« Recompile procedures manually as soon as possible after
the definition of a database object changes

ORACLE

8-31 Copyright © 2009, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:

 Using DEPTREE FILL and IDEPTREE to view
dependencies

« Recompiling procedures, functions, and packages

ORACLE

8-32 Copyright © 2009, Oracle. All rights reserved.

Manipulating Large Objects

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the

following:
« Compare and contrast LONG and LOB (large object) data
types

 Create and maintain LOBR data types
« Differentiate between internal and external LOBS
 Use the DBMS LOB PL/SQL package
e Describe the use of temporary LOBS

ORACLE

9-2 Copyright © 2009, Oracle. All rights reserved.

What Is a LOB?

LOBS are used to store large unstructured data such as text,
graphic images, films, and sound waveforms.

l T

“Four score and seven years
ago, our forefathers brought
forth upon this continent, a
new nation, conceived in
LIBERTY, and dedicated to the

proposition that all men are

created equal.” MOVle (BFILE)

Text (CLOB) H Photo (BLOB)

ORACLE

9-3 Copyright © 2009, Oracle. All rights reserved.

Contrasting LONG and LOB Data Types

LONG and LONG RAW

Single LONG column per table Multiple OB columns per table
Upto 2 GB Upto 4 GB

SELECT returns data SELECT returns locator

Data stored in-line Data stored in-line or out-of-line
Sequential access to data Random access to data

ORACLE

9-5 Copyright © 2009, Oracle. All rights reserved.

Anatomy of a LOB

The LLOB column stores a locator to the 1.OBR’s value.

As
<

LOB column LOB value
of a table

LOB locator >

ORACLE

9-6 Copyright © 2009, Oracle. All rights reserved.

Internal LOBS

The L.OB value is stored in the database.

|

“Four score and seven years ago,

our forefathers brought forth upon
this continent, a new nation,

conceived in LIBERTY, and dedicated
to the proposition that all men

are created equal.”

CLOB BLOB

ORACLE

9-7 Copyright © 2009, Oracle. All rights reserved.

Managing Internal LOBS

« To interact fully with LOB, file-like interfaces are provided
In:
— PL/SQL package DBMS LOB
— Oracle Call Interface (OCI)
— Oracle Objects for object linking and embedding (OLE)
— Pro*C/C++ and Pro*COBOL precompilers
— Java Database Connectivity (JDBC)

 The Oracle server provides some support for LOB
management through SQL.

ORACLE

9-8 Copyright © 2009, Oracle. All rights reserved.

What Are BFILES?

The BFILE data type supports an external or file-based large
object as:

e Attributes in an object type
 Column values in a table

@

Movie (BFILE)

ORACLE

9-9 Copyright © 2009, Oracle. All rights reserved.

Securing BFILES

/

¢ AcCcCess
permissions

b «

Movie (BFILE)

ORACLE

9-10 Copyright © 2009, Oracle. All rights reserved.

A New Database Object: DIRECTORY

DIRECTORY

LOB PATH =
' /oracle/lob/"’
Movie (BFILE)
ORACLE

9-11 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Creating
DIRECTORY ODbjects

Do not create DIRECTORY 0bjects on paths with database
files.

« Limit the number of people who are given the following
system privileges:
— CREATE ANY DIRECTORY
— DROP ANY DIRECTORY

« AllDIRECTORY objects are owned by SYS.

* Create directory paths and properly set permissions before
using the DIRECTORY object so that the Oracle server can

read the file.

ORACLE

9-12 Copyright © 2009, Oracle. All rights reserved.

Managing BFILES

The DBA or the system administrator:
1. Creates an OS directory and supplies files
2. Creates a DIRECTORY object in the database

3. Grants the READ privilege on the DIRECTORY object to
appropriate database users

The developer or the user:
4. Creates an Oracle table with a column defined as a BFILE
data type
5. Inserts rows into the table using the BFILENAME function
to populate the BFILE column

6. Writes a PL/SQL subprogram that declares and initializes
a LOB locator, and reads BFILE

ORACLE

9-13 Copyright © 2009, Oracle. All rights reserved.

Preparing to Use BFILES

1. Create an OS directory to store the physical data files:

mkdir /temp/data files

2. Create a DIRECTORY oObject by using the CREATE
DIRECTORY command:

CREATE DIRECTORY data_files
AS '/temp/data files';

3. Grant the READ privilege on the DIRECTORY object to
appropriate users:

GRANT READ ON DIRECTORY data files
TO SCOTT, MANAGER ROLE, PUBLIC;

ORACLE

9-14 Copyright © 2009, Oracle. All rights reserved.

Populating BFILE Columns with SQL

e Use the BFILENAME function to initialize a BFILE column.

The function syntax is:

FUNCTION BFILENAME(directory;alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

« Example:
— Add a BFILE column to a table:
ALTER TABLE employees ADD video BFILE;

— Update the column using the BFILENAME function:

UPDATE employees
SET video = BFILENAME ('DATA FILES', 'King.avi')

WHERE employee id = 100;

ORACLE

9-15 Copyright © 2009, Oracle. All rights reserved.

Populating a BFILE Column with PL/SQL

CREATE PROCEDURE set wvideo(
dir alias VARCHAR2, dept id NUMBER) IS
filename VARCHAR2 (40) ;
file ptr BFILE;
CURSOR emp csr IS

SELECT first name FROM employees

WHERE department id = dept id FOR UPDATE;

BEGIN
FOR rec IN emp csr LOOP
filename := rec.first name || '.gif';

file ptr := BFILENAME (dir alias, filename);

DBMS_LOB.FIJEEFEET?TTZ:E??T71

UPDATE employees SET video = file ptr
WHERE CURRENT OF emp csr;

DBMS OUTPUT.PUT LINE('FILE: ' || filename |
' SIZE: ' || |DBMS LOB.GETLENGTH(file ptr)|);
DBMS LOB.FILECLOSE (file ptr) j
END LOOP; -

END set wvideo;

ORACLE

9-16 Copyright © 2009, Oracle. All rights reserved.

Using DBMS LOB Routines with BFILES

The DBMS LOB.FILEEXISTS function can check whether the
file exists in the OS. The function returns:

e 0O if the file does not exist
« 1 if the file does exist

CREATE FUNCTION get_filesize(file_ptr IN OUT BFILE)
RETURN NUMBER IS
file exists BOOLEAN;

length NUMBER:= -1;
BEGIN
file exists := DBMS LOB.FILEEXISTS(file ptr)=1;

IF file exists THEN
DBMS LOB.FILEOPEN(file ptr);
length := DBMS LOB.GETLENGTH(file ptr);
DBMS LOB.FILECLOSE (file ptr) ;
END IF;
RETURN length;
END;

/
ORACLE

9-17 Copyright © 2009, Oracle. All rights reserved.

Migrating from LONG to LOB

Oracle Database 10g enables the migration of LONG columns to
LOB columns.

« Data migration consists of the procedure to move existing
tables containing LONG columns to use LOBS:

ALTER TABLE [<schema>.] <table name>
MODIFY (<long col name> {CLOB | BLOB | NCLOB})

« Application migration consists of changing existing LONG
applications for using LOBS.

ORACLE

9-18 Copyright © 2009, Oracle. All rights reserved.

Migrating from LONG to LOB

e Implicit conversion: From LONG (LONG RAW) Or a
VARCHAR?2 (RAW) variable to a CLOB (BLOB) variable, and
vice versa

e EXxplicit conversion:
— TO_CLOB () converts LONG, VARCHAR2, and CHAR to

CLOB.
— TO_BLOB () converts LONG RAW and RAW to BLOB.

e Function and procedure parameter passing:
— CLOBS and BLOBS are passed as actual parameters.

— VARCHAR2, LONG, RAW, and LONG RAW are formal

parameters, and vice versa.
 LOB data is acceptable in most of the SQL and PL/SQL

operators and built-in functions.

ORACLE
Copyright © 2009, Oracle. All rights reserved.

9-19

DBMS LOB Package

e Working with LOBs often requires the use of the Oracle-
supplied DBMS LOB package.

 DBMS LOB provides routines to access and manipulate
Internal and external LOBS.

 Oracle Database 10g enables retrieving LOB data directly
using SQL without a special LOB API.

 In PL/SQL, you can define a VARCHAR?2 for a CLLOB and a
RAW for a BLOB.

ORACLE

9-20 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB Package

e Modify LOB values:
APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE

e Read or examine L.OB values:
GETLENGTH, INSTR, READ, SUBSTR

 Specific to BFILES:
FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

ORACLE

9-21 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB Package

e NULL parameters get NULL returns.

o Offsets:
— BLOB, BFILE: Measured in bytes

— CLOB, NCLOB: Measured in characters
 There are no negative values for parameters.

ORACLE

9-22 Copyright © 2009, Oracle. All rights reserved.

DBMS LOB.READ and DBMS LOB.WRITE

PROCEDURE READ (
lobsrc IN BFILE|BLOB|CLOB ,
amount IN OUT BINARY INTEGER,
offset IN INTEGER,
buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (
lobdst IN OUT BLOB |CLOB,
amount IN OUT BINARY INTEGER,
offset IN INTEGER := 1,
buffer IN RAW|VARCHAR2) -- RAW for BLOB

ORACLE

9-23 Copyright © 2009, Oracle. All rights reserved.

Initializing LOB Columns Added to a Table

* Create the table with columns using the L.OB type, or add
the LOB columns using ALTER TABLE.

ALTER TABLE employees
ADD (resume CLOB, picture BLOB) ;

e [|nitialize the column LOB locator value with the DEFAULT
option or DML statements using the:

— EMPTY CLOB () function for a CLOB column
— EMPTY BLOB () function for a BLOB column

CREATE TABLE emp hiredata (
employee id NUMBER(6),

full name VARCHAR2 (45) ,
resume CLOB DEFAULT EMPTY CLOB(),
picture BLOB DEFAULT EMPTY BLOB()) ;

ORACLE

9-24 Copyright © 2009, Oracle. All rights reserved.

Populating LOB Columns

e Insert a row Iinto a table with LOB columns:

INSERT INTO emp hiredata
(employee id, full name, resume, picture)
VALUES (405, 'Marvin Ellis', EMPTY CLOB(), NULL);

* Initialize a LOB using the EMPTY BLOB () function:

UPDATE emp hiredata
SET resume = 'Date of Birth: 8 February 1951',
picture = EMPTY BLOB()
WHERE employee id = 405;

 Update a CLOB column:

UPDATE emp hiredata
SET resume = 'Date of Birth: 1 June 1956"
WHERE employee id = 170;

ORACLE

9-25 Copyright © 2009, Oracle. All rights reserved.

Updating LOB by Using DBMS LOB in PL/SQL

DECLARE
lobloc CLOB; -- serves as the LOB locator
text VARCHAR2 (50) := 'Resigned = 5 June 2000';
amount NUMBER ; -- amount to be written
offset INTEGER; -- where to start writing
BEGIN

SELECT resume INTO lobloc FROM emp hiredata
WHERE employee id = 405 FOR UPDATE;
offset :=[DBMS LOB.GETLENGTH (lobloc)]| + 2;

amount := length (text) ;
DBMS LOB.WRITE (lobloc, amount, offset, text)j|
text := ' Resigned = 30 September 2000°';

SELECT resume INTO lobloc FROM emp hiredata
WHERE employee id = 170 FOR UPDATE;

amount := length (text) ;
DBMS LOB.WRITEAPPEND (lobloc, amount, text);
'EEEETT;

END ;

ORACLE

9-26 Copyright © 2009, Oracle. All rights reserved.

Selecting CLOB Values by Using SQL

SELECT employee id, full name , resume -- CLOB
FROM emp hiredata
WHERE employee id IN (405, 170);

EMPLOYEE_ID | FULL_MAME |RESUME
1 405 Marvin Ellis (CLOEBY Date of Birth: 8 February 1951 Rezigned = 5 June 2000
2 170 Joe Fox (CLOEY Date of Birth: 1 June 1956 Rezigned = 30 September 2000

ORACLE

9-27 Copyright © 2009, Oracle. All rights reserved.

Selecting cLOB Values by Using DBMS LOB

e DBMS LOB.SUBSTR (lob, amount, start pos)
e DBMS LOB.INSTR (lob, pattern)

SELECT DBMS LOB.SUBSTR (resume, 5, 18),
DBMS LOB.INSTR (resume,' = ')

FROM emp hiredata

WHERE employee id IN (170, 405);

DEMS_LDE.SLIEISTR{RESLIME,S,lB} DEMS_LOB IMSTR{RESUME,'=")
1 Febru 40

2 June E1

ORACLE
9-28 Copyright © 2009, Oracle. All rights reserved.

Selecting CcLOB Values in PL/SQL

SET LINESIZE 50 SERVEROUTPUT ON FORMAT WORD WRAP
DECLARE
text VARCHAR2 (4001) ;

BEGIN

SELECT |resume INTO text
FROM emp hiredata

WHERE employee id = 170;

DBMS OUTPUT.PUT LINE('text is: '|| text);
END;

/

anonymous block completed
text is: Date of Birth: 1 June 1956 Eesigned = 30 Septemher 2000

ORACLE

9-29 Copyright © 2009, Oracle. All rights reserved.

Removing LOBS

« Delete a row containing LOBS:

DELETE
FROM emp hiredata
WHERE employee id = 405;

e Disassociate a 1.OB value from a row:

UPDATE emp hiredata
SET resume = EMPTY CLOB(()
WHERE employee id = 170;

ORACLE

9-30 Copyright © 2009, Oracle. All rights reserved.

Temporary LOBS

« Temporary LOBS:
— Provide an interface to support creation of LOBs that act like
local variables
— Can be BLOBS, CLOBS, or NCLOBS

— Are not associated with a specific table

— Are created using the DBMS LOB.CREATETEMPORARY
procedure

— Use DBMS LOB routines
« The lifetime of a temporary LOB Is a session.

« Temporary LOBS are useful for transforming data in
permanent internal LOBS.

ORACLE

9-31 Copyright © 2009, Oracle. All rights reserved.

Creating a Temporary LOB

PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE is templob open (
lob IN OUT BLOB, retval OUT INTEGER) IS
BEGIN
-- create a temporary LOB
DBMS LOB.CREATETEMPORARY (lob, TRUE) ;
-- see 1f the LOB is open: returns 1 if open
retval := DBMS LOB.ISOPEN (lob);
DBMS OUTPUT.PUT LINE (
'The file returned a value...' || retval);
-- free the temporary LOB
DBMS LOB.FREETEMPORARY (lob);
END ;

/

ORACLE

9-32 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

« |dentify four built-in types for large objects: BL.OB, CLOB,
NCLOB, and BFILE

 Describe how LOBs replace LONG and LONG RAW
 Describe two storage options for LOBS:

— Oracle server (internal LOBS)

— External host files (external LOBS)

 Use the DBMS LOB PL/SQL package to provide routines
for LOB management

 Use temporary LOBS in a session

ORACLE

9-33 Copyright © 2009, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
« Creating object types using the CLOB and BLOB data types

 Creating a table with LLOB data types as columns

* Using the DBMS LOB package to populate and interact with
the LOB data

ORACLE

9-34 Copyright © 2009, Oracle. All rights reserved.

Creating Triggers

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe the different types of triggers
 Describe database triggers and their uses
 Create database triggers

 Describe database trigger-firing rules

« Remove database triggers

ORACLE

10-2 Copyright © 2009, Oracle. All rights reserved.

Types of Triggers

A trigger:

 |saPL/SQL block or a PL/SQL procedure associated with
a table, view, schema, or database

« Executes implicitly whenever a particular event takes place
« Can be either of the following:

— Application trigger: Fires whenever an event occurs with a
particular application

— Database trigger: Fires whenever a data event (such as

DML) or system event (such as logon or shutdown) occurs
on a schema or database

ORACLE

10-3 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Designing Triggers

 You can design triggers to:
— Perform related actions
— Centralize global operations
 You must not design triggers:
— Where functionality is already built into the Oracle server
— That duplicate other triggers

 You can create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

 The excessive use of triggers can result in complex
Interdependencies, which may be difficult to maintain in
large applications.

ORACLE

10-4 Copyright © 2009, Oracle. All rights reserved.

Creating DML Triggers

Create DML statement or row type triggers by using:

CREATE [OR REPLACE] TRIGGER trigger name
timing

eventl [OR event2 OR event3]

ON object name

[[REFERENCING OLD AS old / NEW AS newl]
FOR EACH ROW
[WHEN (condition)]]

trigger body

« A statement trigger fires once for a DML statement.
A row trigger fires once for each row affected.

Note: Trigger names must be unique with respect to other
triggers in the same schema.

ORACLE

10-5 Copyright © 2009, Oracle. All rights reserved.

Types of DML Triggers

The trigger type determines whether the body executes for
each row or only once for the triggering statement.
e A statement trigger:
— Executes once for the triggering event
— Is the default type of trigger
— Fires once even if no rows are affected at all

A row trigger:

— Executes once for each row affected by the triggering event

— Is not executed if the triggering event does not affect any
rows

— Is indicated by specifying the FOR EACH ROW clause

ORACLE

10-6 Copyright © 2009, Oracle. All rights reserved.

Trigger Timing

When should the trigger fire?
e BEFORE: Execute the trigger body before the triggering
DML event on a table.
e AFTER:. Execute the trigger body after the triggering DML
event on a table.
e INSTEAD OF: Execute the trigger body instead of the

triggering statement. This is used for views that are not
otherwise modifiable.

Note: If multiple triggers are defined for the same object, the
order of firing triggers is arbitrary.

ORACLE

10-7 Copyright © 2009, Oracle. All rights reserved.

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a table when
a single row is manipulated:

DML statement

INSERT INTO departments
(department id,department name, location id)
VALUES (400, 'CONSULTING', 2400);

Triggering action — BEFORE Sstatement
DEPARTMENT_ID || CEPARTMENT_mMAME ([LoCATION_ID trigger
1 10 Administration 1700
2 20 Marketing 1300
3 30 Purchasing 1700
4 40 Human Resources 2400
»BEFORE row trigger
27 270 Payrall 1700

»AFTER row trigger
— AFTER Statement trigger

ORACLE

10-8 Copyright © 2009, Oracle. All rights reserved.

Trigger-Firing Sequence

Use the following firing sequence for a trigger on a table when
many rows are manipulated:

UPDATE employees
SET salary = salary * 1.1
WHERE department id = 30;

— BEFORE Statement trigger

EMPLOYEEID [[f LAST_NAME ||| DEPARTMENTID | —» BEFORE row trigger
. e o | —> AFTER row trigger
2 115 Khoo 30 o
3 116 Baida 30
) 117|Toblas ‘!l — BEFORE row trigger
5 1158 Himuro 30 .

& 119 Calmenares 30 _»'_A_FTER row trlgger

—> AFTER Statement trigger

ORACLE

10-9 Copyright © 2009, Oracle. All rights reserved.

Trigger Event Types and Body

A trigger event:

 Determines which DML statement causes the trigger to
execute

« Can be:
— INSERT
— UPDATE [OF column]
— DELETE

A trigger body:

 Determines what action is performed
 |saPL/SQL block or a CALL to a procedure

ORACLE

10-10 Copyright © 2009, Oracle. All rights reserved.

Creating a DML Statement Trigger

Application _l
EMPLOYEES table

INSERT INTO EMPLOYEES...; EMPLOYVEE_ID LasT_MAME B joB_ID
/ 100 King AD_PRES

101 kachhar AD_WP
102 De Haan AD WP
103 Hunold [T_PRCZ

.

== 4

1
_ 2
] 3
SECURE_EMP trigger = 4

i

a/

CREATE OR REPLACE TRIGGER secure emp
BEFORE INSERT ON employees BEGIN
IF (TO CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR
(TO_CHAR (SYSDATE, 'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN
RAISE APPLICATION ERROR(-20500, 'You may insert'

| |* into EMPLOYEES table only during '
| | * business hours.');

END IF;
END;

ORACLE

10-11 Copyright © 2009, Oracle. All rights reserved.

Testing SECURE EMP

INSERT INTO employees (employee id, last name,
first name, email, hire date,
job id, salary, department id)
VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT PROG', 4500, 60);

SOL Error: ORA-Z20500: You may insert into EMPLOYEES tahle only during business hours.
OEA-0A512: at “"TEACH_D.SECURE_EMP", T1ine 4
ORA-D408E: error during execution of trigger 'TEACH_D.S5ECURE_EMP'

ORACLE

10-12 Copyright © 2009, Oracle. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure emp BEFORE
INSERT OR UPDATE OR DELETE ON employees BEGIN
IF (TO CHAR(SYSDATE, 'DY') IN ('SAT','SUN')) OR
(TO CHAR (SYSDATE, 'HH24')
NOT BETWEEN '08' AND '18') THEN
IF| DELETING| THEN RAISE APPLICATION ERROR (
-20502, 'You may delete from EMPLOYEES table'| |
'only during business hours.');
ELSIF | INSERTING |THEN RAISE APPLICATION ERROR (
-20500, 'You may insert into EMPLOYEES table'| |
'only during business hours.');
ELSIF |UPDATING ('SALARY')| THEN
RAISE APPLICATION ERROR(-20503, 'You may '| |
'update SALARY only during business hours.');
ELSE RAISE APPLICATION ERROR(-20504, 'You may'|
' update EMPLOYEES table only during'| |
' normal hours.');
END IF;
END IF;
END ;

ORACLE

10-13 Copyright © 2009, Oracle. All rights reserved.

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN
IF NOT (:NEW.job id IN ('AD PRES', 'AD VP'))
AND :NEW.salary > 15000 THEN
RAISE APPLICATION ERROR (-20202,
'Employee cannot earn more than $15,000.");
END IF;
END;

/

ORACLE

10-14 Copyright © 2009, Oracle. All rights reserved.

Using OLD and NEW Qualifiers

CREATE OR REPLACE TRIGGER audit emp values
AFTER DELETE OR INSERT OR UPDATE ON employees
FOR EACH ROW
BEGIN

INSERT INTO audit emp (user name, time stamp, id,

old last name, new last name, old title,

new title, old salary, new salary)
VALUES (USER, SYSDATE, |:OLD.employee id,
:OLD.last name, :NEW.last name, :OLD.job id,
:NEW.job id, :OLD.salary, :NEW.salary):;

END ;

ORACLE

10-15 Copyright © 2009, Oracle. All rights reserved.

Using OLD and NEW Qualifiers:
Example Using AUDIT EMP

INSERT INTO employees
(employee id, last name, job id, salary, ...)
VALUES (999, 'Temp emp', 'SA REP', 6000,...);

UPDATE employees
SET salary = 7000, last name = 'Smith'

WHERE employee id = 999;

SELECT user name, timestamp, ...
FROM audit emp;

user_NAME | TiME_sTamP |f 10|E olo_ast_mame |f wew_asT_wame|l oo mimie | wew e |§ oLo_saLarr [mEw_saLary
1 TEACH_D 22-FEB-09 (rully {rully Temp emp rull) SA_REF (rully 6000
2 TEACH_D 22-FEE-09 998 Temp emp Smith SA_REF SA_REF 6000 7000

ORACLE

10- 16 Copyright © 2009, Oracle. All rights reserved.

Restricting a Row Trigger: Example

CREATE OR REPLACE TRIGGER derive commission pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN | (NEW.job id = 'SA REP')
BEGIN
IF INSERTING THEN
:NEW.commission pct := 0;
ELSIF :0OLD.commission pct IS NULL THEN

:NEW.commission pct := 0;
ELSE
:NEW.commission pct := :OLD.commission pct+0.05;
END IF;
END ;

/

ORACLE

10 - 17 Copyright © 2009, Oracle. All rights reserved.

Summary of the Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.
2. Loop for each row affected:
a. Execute all BEFORE ROW triggers.

b. Execute the DML statement and perform integrity constraint
checking.

c. Execute all AFTER ROW triggers.
3. Execute all AFTER STATEMENT triggers.

Note: Integrity checking can be deferred until the COMMIT
operation is performed.

ORACLE

10-18 Copyright © 2009, Oracle. All rights reserved.

Implementing an Integrity Constraint
with a Trigger

UPDATE employees SET| department id = 999
WHERE employee id = 170;
-- Integrity constraint violation error

CREATE OR REPLACE TRIGGER employee dept fk trg
AFTER UPDATE OF department id
ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES (:new.department id,

'Dept '| |:new.department id, NULL, NULL);
EXCEPTION
WHEN DUP VAL ON INDEX THEN
NULL; -- mask exception if department exists
END ;
/

UPDATE employees SETldepartment_id = 999|
WHERE employee id = :

-- Successful after trigger is fired

ORACLE

10-19 Copyright © 2009, Oracle. All rights reserved.

INSTEAD OF Triggers

d Application R
[INSERT INTO my view]
. J
INSERT
v INSTEAD OF trigger TABEES >
MY VIEW UPDATE
— TABLE2 R

ORACLE

10- 20 Copyright © 2009, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Perform the INSERT into EMP DETAILS that is based on
EMPLOYEES and DEPARTMENTS tables:

INSERT INTO emp details
VALUES (9001, 'ABBOTT',3000, 10, 'Administration');

EMPLOVEE_ID |[§ LasT_MAME|[E DEPARTMEMT_ID
1 100 King 50

@ INSTEAD OF INSERT
iInto EMP_ DETAILS

g 101 kachhar =1
3 102 De Haan a0
@ INSERT INnto NEW_EMPS l @ UPDATE NEW_DEPTS l
EMPLOYEE_ID LesT _mMAamE Ry DEPARTMERMT_ID DEPARTMEMT_ID CEPARTMEMT_MAME CEFT_SAL
100 king 24000 an 10 Administration 7400
101 Kochhar 15700 an 20 Marketing 20300
102 De Haan 15700 a0 30 Purchasing Zae00
40 Human Resources e500
o001l ABBOTT 3000 10f ===
ORACLE

10-21 Copyright © 2009, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger

Use INSTEAD OF to perform DML on complex views:

CREATE TABLE new emps AS
SELECT employee id,last name, salary,department id
FROM employees;

CREATE TABLE new depts AS
SELECT d.department id,d.department name,
sum(e.salary) dept sal
FROM employees e, departments d
WHERE e.department id = d.department id;

CREATE VIEW emp details AS
SELECT e.employee id, e.last name, e.salary,
e.department id, d.department name
FROM employees e, departments d
WHERE e.department id = d.department id
GROUP BY d.department id,d.department name;

ORACLE

10 - 22 Copyright © 2009, Oracle. All rights reserved.

Comparison of Database Triggers and
Stored Procedures

Triggers Procedures

Defined with CREATE TRIGGER Defined with CREATE PROCEDURE
Data dictionary contains source Data dictionary contains source
code in USER TRIGGERS. code in USER SOURCE.

Implicitly invoked by DML Explicitly invoked

COMMIT, SAVEPOINT, and COMMIT, SAVEPOINT, and
ROLLBACK are not allowed. ROLLBACK are allowed.

ORACLE

10-24 Copyright © 2009, Oracle. All rights reserved.

Comparison of Database Triggers
and Oracle Forms Triggers

4)

°
° J

[INSERT INTO EMPLOYEES]

U J
EMPLOYEES table) CHECK_SAL trigger
EMPLOYEE_ID | LasT_mame (§ joB_ID Sh LAY
100 King AD_PRES 24000 %
101 Kochhar AD_VF 18700 > ﬁ
102 De Haan AD_VP 15700 BEFORE f/:/_::;".
103 Hunold IT_PROG 3900 INSERT | >

row

ORACLE

10-25 Copyright © 2009, Oracle. All rights reserved.

Managing Triggers

 Disable or reenable a database trigger:

ALTER TRIGGER trigger name DISABLE | ENABLE

 Disable or reenable all triggers for a table:

ALTER TABLE table name DISABLE | ENABLE
ALL TRIGGERS

 Recompile a trigger for a table:

ALTER TRIGGER trigger name COMPILE

ORACLE

10 - 26 Copyright © 2009, Oracle. All rights reserved.

Removing Triggers

To remove a trigger from the database, use the DROP
TRIGGER statement:

DROP TRIGGER trigger name;

Example:

DROP TRIGGER secure emp;

Note: All triggers on a table are removed when the table is
removed.

ORACLE

10 - 27 Copyright © 2009, Oracle. All rights reserved.

Testing Triggers

 Test each triggering data operation, as well as
nontriggering data operations.

e Test each case of the WHEN clause.

e Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

« Test the effect of the trigger on other triggers.
« Test the effect of other triggers on the trigger.

ORACLE

10- 28 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

 Create database triggers that are invoked by DML
operations

* Create statement and row trigger types

e Use database trigger-firing rules

 Enable, disable, and manage database triggers
 Develop a strategy for testing triggers

« Remove database triggers

ORACLE

10- 29 Copyright © 2009, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:
e Creating row triggers
« Creating a statement trigger
e Calling procedures from a trigger

ORACLE

10-30 Copyright © 2009, Oracle. All rights reserved.

Applications for Triggers

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Create additional database triggers
 Explain the rules governing triggers
 Implement triggers

ORACLE

11-2 Copyright © 2009, Oracle. All rights reserved.

Creating Database Triggers

e Triggering a user event:
— CREATE, ALTER, Or DROP

— Logging on or off
« Triggering database or system event:

— Shutting down or starting up the database
— A specific error (or any error) being raised

ORACLE

11-3 Copyright © 2009, Oracle. All rights reserved.

Creating Triggers on DDL Statements

Syntax:
CREATE [OR REPLACE] TRIGGER trigger name
Timing
[ddl eventl [OR ddl event2 OR ...]]

ON {DATABASE |SCHEMA}
trigger body

ORACLE

11-4 Copyright © 2009, Oracle. All rights reserved.

Creating Triggers on System Events

Syntax:
CREATE [OR REPLACE] TRIGGER trigger name
timing
[database eventl [OR database event2 OR ...]]

ON {DATABASE | SCHEMA}
trigger body

ORACLE

11-5 Copyright © 2009, Oracle. All rights reserved.

LOGON and LOGOFF Triggers: Example

CREATE OR REPLACE TRIGGER logon trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log trig table(user id,log date,action)
VALUES (USER, SYSDATE, 'Logging on') ;
END ;

/

CREATE OR REPLACE TRIGGER logoff trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log trig table(user id,log date,action)
VALUES (USER, SYSDATE, 'Logging off');
END ;

/
ORACLE

11-6 Copyright © 2009, Oracle. All rights reserved.

CALL Statements

CREATE [OR REPLACE] TRIGGER trigger name
timing

eventl [OR event2 OR event3]

ON table name

[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure name

/

CREATE OR REPLACE TRIGGER log employee
BEFORE INSERT ON EMPLOYEES
CALL log execution

/

Note: There is no semicolon at the end of the CALL statement.

ORACLE

11-7 Copyright © 2009, Oracle. All rights reserved.

Reading Data from a Mutating Table

r B
UPDATE emgloyees

SET salary = 3400
WHERE last name = 'Stiles’';

L y,
: CHECK SALARY
Failure | -
EMPLOYEES table ! trigger
-~
EMPLOYEEID ([LasT_mame|f josuD |f salary| o0 m e e e = = > =
125 Mayer ST_CLERK 3200 e

126 Mikkilineni sT_CLERK 2700 %
127 Landry ST_CLERK 2400 %

123 mMarkle ST_CLERE 2200 >

1385 5tiles 5T_CLERE !

Tr'iélgered table or

mutating table [Trigger event
ORACLE

11-8 Copyright © 2009, Oracle. All rights reserved.

BEFORE UPDATE row

Mutating Table: Example

CREATE OR REPLACE TRIGGER check salary
BEFORE INSERT OR UPDATE OF salary, job id
ON employees
FOR EACH ROW
WHEN (NEW.job id <> 'AD PRES')
DECLARE
minsalary employees.salary%TYPE;
maxsalary employees.salary%TYPE;
BEGIN
SELECT MIN(salary), MAX(salary)
INTO minsalary, maxsalary
FROM [employees |
WHERE job id = :NEW.job id;
IF :NEW.salary < minsalary OR
:NEW.salary > maxsalary THEN
RAISE APPLICATION ERROR(-20505, 'Out of range') ;
END IF;
END ;

/

ORACLE

11-9 Copyright © 2009, Oracle. All rights reserved.

Mutating Table: Example

UPDATE employees
SET salary = 3400
WHERE last name = 'Stiles';

Error report:

SOL Error: 0OEA-04091: table TEACH_D.EMPLOYEES is mutating, TtrigderSfunction may not see it
OFEA-06512: at "TEACH_D.CHECK_SALARY", Tine 5

ORA-QA0EE: error during execution of trigoger 'TEACH_D.CHECK_SaLARY!
04091, 00000 - "tahle ¥s.¥s is mutating, triggerSfTunction may not see it"

ORACLE

11-10 Copyright © 2009, Oracle. All rights reserved.

Benefits of Database Triggers

 |Improved data security provides enhanced and complex:
— Security checks
— Auditing
 |Improved data integrity:
— Enforces dynamic data integrity constraints
— Enforces complex referential integrity constraints

— Ensures that related operations are performed together
implicitly

ORACLE

11-11 Copyright © 2009, Oracle. All rights reserved.

Managing Triggers

The following system privileges are required to manage
triggers:
e The CREATE/ALTER/DROP (ANY) TRIGGER privilege
that enables you to create a trigger in any schema

e The ADMINISTER DATABASE TRIGGER privilege that
enables you to create a trigger on DATABASE

« The EXECUTE privilege (if your trigger refers to any objects
that are not in your schema)
Note: Statements in the trigger body use the privileges of the

trigger owner, not the privileges of the user executing the
operation that fires the trigger.

ORACLE

11-12 Copyright © 2009, Oracle. All rights reserved.

Business Application Scenarios for
Implementing Triggers

You can use triggers for:
e Security
e Auditing
« Data integrity
« Referential integrity
e Table replication
 Computing derived data automatically
« Eventlogging

Note: Appendix C covers each of these examples in more
detail.

ORACLE

11-13 Copyright © 2009, Oracle. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:
e TUSER OBJECTS data dictionary view: Object information
e TUSER TRIGGERS data dictionary view: Text of the trigger

e TUSER ERRORS data dictionary view: PL/SQL syntax errors
(compilation errors) of the trigger

ORACLE

11-14 Copyright © 2009, Oracle. All rights reserved.

Using USER TRIGGERS

Column Column Description

TRIGGER NAME Name of the trigger

TRIGGER TYPE The type is BEFORE, AFTER, INSTEAD OF

TRIGGERING_EVENT The DML operation firing the trigger

TABLE NAME Name of the database table

REFERENCING NAMES |Name used for :OLD and :NEW

WHEN CLAUSE The when clause used
STATUS The status of the trigger
TRIGGER BODY The action to take

* Abridged column list

ORACLE

11-15 Copyright © 2009, Oracle. All rights reserved.

Listing the Code of Triggers

SELECT trigger name, trigger type, triggering event,
table name, referencing names,
status, trigger body

FROM user triggers

WHERE trigger name = 'RESTRICT SALARY';

TRIGGER_NAME] TRIGGER_TvPE || TRIGGERING_E.[J TaBLE.|f] REFERENCING_MAMES @ sTA..|TRIGGER BODY
1 RESTRICT_SALARY BEFORE EACH ROW INSERT OR UPDATE EMPLOYEES REFERENCING NEW AS NEW OLD AS OLD ENABLED BEGIN IF NOT CNEW.job_id IN (AD_PRES', 'AD_

ORACLE

11-16 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Use advanced database triggers

e List mutating and constraining rules for triggers
« Describe real-world applications of triggers
 Manage triggers

e View trigger information

ORACLE

11-17 Copyright © 2009, Oracle. All rights reserved.

Practice 11: Overview

This practice covers the following topics:
« Creating advanced triggers to manage data integrity rules
« Creating triggers that cause a mutating table exception

« Creating triggers that use package state to solve the
mutating table problem

ORACLE

11-18 Copyright © 2009, Oracle. All rights reserved.

Understanding and Influencing
the PL/SQL Compiler

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Describe native and interpreted compilations

« List the features of native compilation

e Switch between native and interpreted compilations
e Set parameters that influence PL/SQL compilation

* Query data dictionary views on how PL/SQL code is
compiled

e Use the compiler warning mechanism and the
DBMS WARNING package to implement compiler warnings

ORACLE

12 -2 Copyright © 2009, Oracle. All rights reserved.

Native and Interpreted Compilation

Interpreted code : Natively compiled code

« Compiled to m-code : Translated C and compiled
« Stored in the database 1« Copied to a code library
|
|
|
|

............ ; Translated

PL/SQL source o
to C code C compiler

m-code

Native code library in OS directory

ORACLE

12 -3 Copyright © 2009, Oracle. All rights reserved.

Features and Benefits
of Native Compilation

Native compilation:
e Uses a generic makefile that uses the following
operating system software:
— C compiler
— Linker
— Make utility

« (Generates shared libraries that are copied to the file
system and loaded at run time

 Provides better performance (up to 30% faster than
Interpreted code) for computation-intensive procedural
operations

ORACLE

12 -4 Copyright © 2009, Oracle. All rights reserved.

Considerations When Using
Native Compilation

Consider the following:

 Debugging tools for PL/SQL cannot debug natively
compiled code.

« Natively compiled code is slower to compile than
Interpreted code.

« Large amounts of natively compiled subprograms can
affect performance due to operating system—-imposed
limitations when handling shared libraries. OS directory
limitations can be managed by setting database
Initialization parameters:

— PLSQL NATIVE LIBRARY SUBDIR COUNT and

— PLSQL NATIVE LIBRARY DIR

ORACLE

12 -5 Copyright © 2009, Oracle. All rights reserved.

Parameters Influencing Compilation

e System parameters are set inthe initSID.ora file or by
using the SPFILE:

PLSQL NATIVE LIBRARY DIR = full-directory-path-name
PLSQL NATIVE LIBRARY SUBDIR COUNT = count

« System or session parameters:

PLSQL COMPILER FLAGS = 'NATIVE' or 'INTERPRETED'

ORACLE

12-6 Copyright © 2009, Oracle. All rights reserved.

Switching Between Native
and Interpreted Compilation

e Setting native compilation:
— For the system:
ALTER SYSTEM SET plsql compiler flags='NATIVE';

— For the session:
ALTER SESSION SET plsql compiler flags='NATIVE';

« Setting interpreted compilation:

— For the system level:

ALTER SYSTEM
SET plsqgl compiler flags='INTERPRETED';

— For the session:

ALTER SESSION
SET plsql compiler flags='INTERPRETED';

ORACLE

12 -7 Copyright © 2009, Oracle. All rights reserved.

Viewing Compilation Information
In the Data Dictionary

Query information in the following views:
e TUSER STORED SETTINGS

e USER PLSQL OBJECTS
Example:

SELECT param value

FROM user stored settings

WHERE param name = 'plsql compiler flags'
AND object name = 'GET EMPLOYEES';

Note: The PARAM VALUE column has a value of NATIVE for

procedures that are compiled for native execution; otherwise, it
has a value of INTERPRETED.

ORACLE

12-8 Copyright © 2009, Oracle. All rights reserved.

Using Native Compilation

To enable native compilation, perform the following steps:
1. Edit the supplied makefile and enter appropriate paths
and other values for your system.

2. Setthe PLSQL COMPILER FLAGS parameter (at system
or session level) to the value NATIVE. The default is
INTERPRETED.

3. Compile the procedures, functions, and packages.

4. Query the data dictionary to see that a procedure is
compiled for native execution.

ORACLE

12-9 Copyright © 2009, Oracle. All rights reserved.

Compiler Warning Infrastructure

The PL/SQL compiler in Oracle Database 10g has been
enhanced to produce warnings for subprograms. Warning
levels:

 Can be set:

— Declaratively with the PLSQL WARNINGS Iinitialization
parameter

— Programmatically using the DBMS WARNINGS package

 Are arranged in three categories: severe, performance,
and informational

« Can be enabled and disabled by category or a specific
message

Examples of warning messages:

SP2-0804: Procedure created with compilation warnings

PLW-07203: The 'IO0 TBL' parameter may benefit from use
of the NOCOPY compiler hint.

ORACLE

12 -10 Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels

Set the PLSQL WARNINGS Initialization parameter to enable the
database to issue warning messages.

ALTER SESSION SET PLSQL WARNINGS = 'ENABLE:SEVERE',
'DISABLE: INFORMATIONAL' ;

 The PLSQL WARNINGS combine a qualifier value
(ENABLE, DISABLE, or ERROR) with a comma-separated

list of message numbers, or with one of the following
modifier values:

— ALL, SEVERE, INFORMATIONAL, or PERFORMANCE

 Warning messages use a PLW prefix.

PLW-07203: The 'IO TBL' parameter may benefit from
use of the NOCOPY compiler hint.

ORACLE

12-11 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Using PLSQL WARNINGS

The PLSQL WARNINGS setting:
e« Can be set to DEFERRED at the system level

* Is stored with each compiled subprogram

 That is current for the session is used by default when
recompiling with:
— A CREATE OR REPLACE statement
— AN ALTER. . .COMPILE statement

 That is stored with the compiled subprogram is used when
REUSE SETTINGS is specified when recompiling with an

ALTER...COMPILE statement

ORACLE

12 -12 Copyright © 2009, Oracle. All rights reserved.

DBMS WARNING Package

The DBMS WARNING package provides a way to

programmatically manipulate the behavior of the current system
or session PL/SQL warning settings. Using DBMS WARNING

subprograms, you can:
* Query existing settings

* Modify the settings for specific requirements or restore
original settings

« Delete the settings
Example: Saving and restoring warning settings for a
development environment that calls your code that compiles

PL/SQL subprograms and suppresses warnings due to
business requirements

ORACLE

12 - 13 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING Procedures

Package procedures change PL/SQL warnings:

ADD WARNING SETTING CAT (w category,w value, scope)
ADD WARNING SETTING NUM(w number,w value, scope)
SET WARNING SETTING STRING(w value, scope)

« All parameters are IN parameters and have the VARCHAR?2
data type. However, the w number parameter is a
NUMBER data type.

« Parameter string values are not case-sensitive.

« The w wvalue parameters values are ENABLE, DISABLE,
and ERROR.

e The w_category values are ALL, INFORMATIONAL,
SEVERE, and PERFORMANCE.

e The scope value is either SESSION or SYSTEM. Using
SYSTEM requires the ALTER SYSTEM privilege.

ORACLE

12 - 14 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING Functions

Package functions read PL/SQL warnings:

GET CATEGORY (w number) RETURN VARCHAR2

GET WARNING SETTING CAT (w category) RETURN VARCHAR2
GET WARNING SETTING NUM(w number) RETURN VARCHAR2
GET WARNING SETTING STRING RETURN VARCHAR2

e GET CATEGORY returns a value of ALL, INFORMATIONAL,
SEVERE, or PERFORMANCE for a given message number.

* GET WARNING SETTING CAT returns ENABLE, DISABLE,
or ERROR as the current warning value for a category
name, and GET WARNING SETTING NUM returns the

value for a specific message number.
e GET WARNING SETTING STRING returns the entire
warning string for the current session.

ORACLE

12 - 15 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING: Example

Consider the following scenario:

Save current warning settings, disable warnings for the
PERFORMANCE category, compile a PL/SQL package, and

restore the original warning setting.

CREATE PROCEDURE compile(pkg name VARCHAR2) IS
warn value VARCHAR2 (200) ;
compile stmt VARCHAR2 (200) :=
'ALTER PACKAGE '|| pkg name ||' COMPILE';
BEGIN
warn value := -- Save current settings
DBMS WARNING.GET WARNING SETTING STRING;
DBMS WARNING.ADD WARNING SETTING CAT(-- change
'PERFORMANCE', 'DISABLE', 'SESSION');
EXECUTE IMMEDIATE compile stmt;
DBMS WARNING.SET WARNING SETTING STRING(--restore
warn value, 'SESSION');

END ;

ORACLE

12 - 16 Copyright © 2009, Oracle. All rights reserved.

Using DBMS WARNING: Example

To test the compile procedure, you can use the following
script sequence:

DECLARE
PROCEDURE print (s VARCHAR2) IS
BEGIN
DBMS OUTPUT.PUT LINE(s);
END ;
BEGIN
print ('Warning settings before: '] |
DBMS WARNING.GET WARNING SETTING STRING) ;
compile ('my package');
print ('Warning settings after: '||
DBMS WARNING.GET WARNING SETTING STRING) ;
END;
/
SHOW ERRORS PACKAGE MY PACKAGE

ORACLE

12 - 17 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
e Switch between native and interpreted compilations

e Set parameters that influence native compilation of
PL/SQL programs

 Query data dictionary views that provide information about
PL/SQL compilation settings

 Use the PL/SQL compiler warning mechanism:
— Declaratively by setting the PLSQL. WARNINGS parameter
— Programmatically using the DBMS WARNING package

ORACLE

12 - 18 Copyright © 2009, Oracle. All rights reserved.

Practice 12: Overview

This practice covers the following topics:

« Enabling native compilation for your session and compiling
a procedure

 Creating a subprogram to compile a PL/SQL procedure,
function, or a package; suppressing warnings for the
PERFORMANCE compiler warning category; and restoring

the original session warning settings

 Executing the procedure to compile a PL/SQL package
containing a procedure that uses a PL/SQL table as an IN

OUT parameter without specifying the NOCOPY hint

ORACLE

12 - 19 Copyright © 2009, Oracle. All rights reserved.

Studies for Implementing Triggers

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Enhance database security with triggers

* Audit data changes using data manipulation language
(DML) triggers

 Enforce data integrity with DML triggers

e Maintain referential integrity using triggers

e Use triggers to replicate data between tables

e Use triggers to automate computation of derived data
* Provide event-logging capabilities using triggers

ORACLE

C-2 Copyright © 2009, Oracle. All rights reserved.

Controlling Security Within the Server

Using database security with the GRANT statement

GRANT SELECT, INSERT, UPDATE, DELETE

ON employees

TO clerk; -- database role
GRANT clerk TO scott;

ORACLE

C-3 Copyright © 2009, Oracle. All rights reserved.

Controlling Security
with a Database Trigger

CREATE OR REPLACE TRIGGER secure emp
BEFORE INSERT OR UPDATE OR DELETE ON employees
DECLARE
dummy PLS INTEGER;
BEGIN
IF (TO CHAR (SYSDATE, 'DY') IN ('SAT','SUN')) THEN
RAISE APPLICATION ERROR(-20506, 'You may only
change data during normal business hours.');
END IF;
SELECT COUNT (*) INTO dummy FROM holiday
WHERE holiday date = TRUNC (SYSDATE);
IF dummy > 0 THEN
RAISE APPLICATION ERROR(-20507,
'"You may not change data on a holiday.'):;
END IF;
END ;

/

ORACLE

C-4 Copyright © 2009, Oracle. All rights reserved.

Using the Server Facility
to Audit Data Operations

The Oracle server stores the audit information in a data
dictionary table or an operating system file.

AUDIT INSERT, UPDATE, DELETE
ON departments
BY ACCESS

WHENEVER SUCCESSFUL;

AUDIT INSEET, succeeded.

ORACLE

C-5 Copyright © 2009, Oracle. All rights reserved.

Auditing by Using a Trigger

CREATE OR REPLACE TRIGGER audit emp values
AFTER DELETE OR INSERT OR UPDATE
ON employees FOR EACH ROW
BEGIN
IF (audit emp pkg. reason IS NULL) THEN
RAISE APPLICATION ERROR (-20059, 'Specify a
reason for operation through the procedure
AUDIT EMP PKG.SET REASON to proceed.');
ELSE

INSERT INTO audit emp table (user name,
timestamp, id, old last name, new last name,
0ld salary, new salary, comments)

VALUES (USER, SYSDATE, :0LD.employee id,
:OLD.last name, :NEW.last name, :OLD.salary,
:NEW.salary, audit emp pkg.reason) ;

END IF;
END ;

CREATE OR REPLACE TRIGGER cleanup audit emp
AFTER INSERT OR UPDATE OR DELETE ON employees
BEGIN audit emp package.g reason := NULL;

END;

ORACLE

C-6 Copyright © 2009, Oracle. All rights reserved.

Auditing Triggers by Using
Package Constructs

DML into the
EMPLOYEES table

7 ,@ AUDIT EMPDML TRG
P AFTER STATEMENT
®—'§ AUDIT_EMP_PKG ~ invokes the AUDIT EMP
Z . Z _
z with package ~—_ procedure.
- 1 variables 1=
) AUDIT TABLE
~ P2
= .
Z .
AUDIT EMP TRG — ;Z é
FOR EACH ROW @ Z Z
increments
package The AUDIT_ EMP procedure
variables. reads package variables,

updates AUDIT TABLE, and
resets package variables.

ORACLE

C-7 Copyright © 2009, Oracle. All rights reserved.

Auditing Triggers by Using
Package Constructs

AFTER statement trigger:

CREATE OR REPLACE TRIGGER audit empdml trg
AFTER UPDATE OR INSERT OR DELETE on employees
BEGIN

audit emp; -- write the audit data
END audit emp tab;

/
AFTER row trigger:

CREATE OR REPLACE TRIGGER audit emp trg

AFTER UPDATE OR INSERT OR DELETE ON EMPLOYEES

FOR EACH ROW

-- Call Audit package to maintain counts

CALL audit emp pkg.set (INSERTING, UPDATING,DELETING) ;

/

ORACLE

C-8 Copyright © 2009, Oracle. All rights reserved.

AUDIT PKG Package

CREATE OR REPLACE PACKAGE audit emp pkg IS

delcnt PLS INTEGER := 0;
inscnt PLS INTEGER := 0;
updcnt PLS INTEGER := 0;

PROCEDURE init;
PROCEDURE set (i BOOLEAN,u BOOLEAN,d BOOLEAN) ;
END audit emp pkg:;
/
CREATE OR REPLACE PACKAGE BODY audit emp pkg IS
PROCEDURE init IS

BEGIN
inscnt := 0; updcnt := 0; delcnt := 0;
END ;
PROCEDURE set (i BOOLEAN,u BOOLEAN,d BOOLEAN) IS
BEGIN
IF i THEN inscnt := inscnt + 1;
ELSIF d THEN delcnt := delcnt + 1;
ELSE upd := updcnt + 1;
END IF;
END ;
END audit emp pkg;

/
ORACLE

C-9 Copyright © 2009, Oracle. All rights reserved.

AUDIT TABLE Table and
AUDIT EMP Procedure

CREATE TABLE audit table (
USER NAME VARCHAR2 (30),
TABLE NAME VARCHAR2 (30),

INS NUMBER,

UPD NUMBER,

DEL NUMBER)

/
CREATE OR REPLACE PROCEDURE audit emp IS
BEGIN

IF delcnt + inscnt + updent <> 0 THEN
UPDATE audit table

SET del = del + audit emp pkg.delent,
ins = ins + audit emp pkg.inscnt,
upd = upd + audit emp pkg.updcnt

WHERE user name = USER
AND table name = 'EMPLOYEES';
audit emp pkg.init;
END IF;
END audit emp;

/

ORACLE

C-10 Copyright © 2009, Oracle. All rights reserved.

Enforcing Data Integrity Within the Server

ALTER TABLE employees ADD
CONSTRAINT ck salary CHECK (salary >= 500);

Table altered.

ORACLE

C-11 Copyright © 2009, Oracle. All rights reserved.

Protecting Data Integrity with a Trigger

CREATE OR REPLACE TRIGGER check salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE APPLICATION ERROR (-20508,

'Do not decrease salary.');

END ;

/

ORACLE

C-12 Copyright © 2009, Oracle. All rights reserved.

Enforcing Referential Integrity
Within the Server

ALTER TABLE employees
ADD CONSTRAINT emp deptno fk
FOREIGN KEY (department id)
REFERENCES departments (department id)
ON DELETE CASCADE;

ORACLE

C-13 Copyright © 2009, Oracle. All rights reserved.

Protecting Referential Integrity
with a Trigger

CREATE OR REPLACE TRIGGER cascade updates
AFTER UPDATE OF department id ON departments
FOR EACH ROW
BEGIN
UPDATE employees
SET employees.department id=:NEW.department id
WHERE employees.department id=:O0LD.department id;
UPDATE job history
SET department id=:NEW.department id
WHERE department id=:OLD.department id;
END;

/

ORACLE

C-14 Copyright © 2009, Oracle. All rights reserved.

Replicating a Table Within the Server

CREATE MATERIALIZED VIEW emp copy
NEXT sysdate + 7
AS SELECT * FROM employees@ny;

ORACLE

C-15 Copyright © 2009, Oracle. All rights reserved.

Replicating a Table with a Trigger

CREATE OR REPLACE TRIGGER emp replica
BEFORE INSERT OR UPDATE ON employees FOR EACH ROW
BEGIN /* Proceed if user initiates data operation,
NOT through the cascading trigger.*/
IF INSERTING THEN
IF :NEW.flag IS NULL THEN
INSERT INTO employees@sf
VALUES (:new.employee id,...,'B');

:NEW.flag := 'A!';
END IF;
ELSE /* Updating. */
IF :NEW.flag = :0LD.flag THEN

UPDATE employees@sf
SET ename=:NEW.last name, ..., flag=:NEW.flag

WHERE employee id = :NEW.employee id;
END IF;
IF :0OLD.flag = 'A' THEN :NEW.flag := 'B';
ELSE :NEW.flag := 'A';
END IF;
END IF;
END ;

ORACLE

C-16 Copyright © 2009, Oracle. All rights reserved.

Computing Derived Data Within the Server

UPDATE departments
SET total sal=(SELECT SUM(salary)
FROM employees
WHERE employees.department id =
departments.department id) ;

ORACLE

C-17 Copyright © 2009, Oracle. All rights reserved.

Computing Derived Values with a Trigger

CREATE PROCEDURE increment salary
(id NUMBER, new sal NUMBER) IS

BEGIN
UPDATE departments
SET total sal = NVL (total sal, 0)+ new sal

WHERE department id = id;
END increment salary;

CREATE OR REPLACE TRIGGER compute salary
AFTER INSERT OR UPDATE OF salary OR DELETE
ON employees FOR EACH ROW
BEGIN
IF DELETING THEN increment salary(
:OLD.department id, (-1*:0LD.salary));
ELSIF UPDATING THEN increment salary(
:NEW.department id, (:NEW.salary-:0LD.salary)) ;
ELSE increment salary (
:NEW.department id, :NEW.salary); --INSERT
END IF;
END;

ORACLE

C-18 Copyright © 2009, Oracle. All rights reserved.

Logging Events with a Trigger

CREATE OR REPLACE TRIGGER notify reorder rep
BEFORE UPDATE OF quantity on hand, reorder point
ON inventories FOR EACH ROW
DECLARE
dsc product descriptions.product description%TYPE;
msg text VARCHAR2 (2000) ;
BEGIN
IF :NEW.quantity on hand <=
:NEW.reorder point THEN
SELECT product description INTO dsc
FROM product descriptions

WHERE product id = :NEW.product id;
_ msg_text := 'ALERT: INVENTORY LOW ORDER:' | |
"Yours,' | |CHR(10) ||user || '.'|| CHR(10);

ELSIF :0OLD.quantity on hand >=
:NEW.quantity on hand THEN
msg text := 'Product #'||... CHR(10);
END IF;
UTL MAIL.SEND('inv@oracle.com', 'ord@oracle.com',
message=>msg text, subject=>'Inventory Notice!');

END ;

ORACLE

C-19 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

 Use database triggers and database server functionality to:
— Enhance database security
— Audit data changes
— Enforce data integrity
— Maintain referential integrity
— Replicate data between tables
— Automate computation of derived data
— Provide event-logging capabilities
 Recognize when to use triggers to database functionality

ORACLE

C-21 Copyright © 2009, Oracle. All rights reserved.

Review of PL/SQL

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

e DECLARE (optional)

— Declare PL/SQL objects to be used within this block.
e BEGIN (mandatory)

— Define the executable statements.
e EXCEPTION (optional)

— Define the actions that take place if an error or exception
arises.

e END; (mandatory)

ORACLE

D-2 Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

 Syntax:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

 Examples:

Declare
v_hiredate DATE;
v_deptno NUMBER (2) NOT NULL := 10;
v_location VARCHAR2 (13) := 'Atlanta';
C_ comm CONSTANT NUMBER := 1400;
v_count BINARY INTEGER := 0;
v _valid BOOLEAN NOT NULL := TRUE;

ORACLE

D-3 Copyright © 2009, Oracle. All rights reserved.

Declaring Variables with the
$TYPE Attribute

Examples:
V_ename employees.last name%TYPE;
v_balance NUMBER (7, 2) ;
v_min balance v_balance%TYPE := 10;

ORACLE

D-4 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of a new
employee.

Example:

TYPE emp record type IS RECORD
(ename VARCHAR2 (25),

job VARCHAR2 (10),
sal NUMBER (8, 2)) ;
emp record emp record type;

ORACLE

D-5 Copyright © 2009, Oracle. All rights reserved.

%SROWTYPE Attribute

Examples:

e Declare a variable to store the same information about a
department as is stored in the DEPARTMENTS table.

dept record departments%SROWTYPE;

e Declare a variable to store the same information about an
employee as Is stored in the EMPLOYEES table.

emp record employees%ROWTYPE;

ORACLE

D-6 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Table

DECLARE
TYPE ename table type IS TABLE OF
employees.last name%TYPE
INDEX BY BINARY INTEGER;
TYPE hiredate table type IS TABLE OF DATE
INDEX BY BINARY INTEGER;

ename table ename table type;

hiredate table hiredate table type;
BEGIN

ename table(l) := 'CAMERON';

hiredate table(8) := SYSDATE + 7;

IF ename table.EXISTS(1l) THEN
INSERT INTO ...

END;

ORACLE

D-7 Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL

The INTO clause is mandatory.

Example:
DECLARE
v_deptid NUMBER (4) ;
v_loc NUMBER (4) ;
BEGIN
SELECT department id, location id
INTO v_deptno, v loc
FROM departments
WHERE department name = 'Sales’';
END ;

ORACLE

D-8 Copyright © 2009, Oracle. All rights reserved.

Inserting Data

Add new employee information to the EMPLOYEES table.

Example:
DECLARE
v_empid employees.employee id%TYPE;
BEGIN
SELECT employees seq.NEXTVAL
INTO V_empno

FROM dual;
INSERT INTO employees(employee id, last name,
job id, department id)
VALUES (v_empno, 'HARDING', 'PU CLERK', 30);
END ;

ORACLE

D-9 Copyright © 2009, Oracle. All rights reserved.

Updating Data

Increase the salary of all employees in the EMPLOYEES table
who are purchasing clerks.

Example:
DECLARE
v_sal increase employees.salary%TYPE := 2000;
BEGIN
UPDATE employees
SET salary = salary + v _sal increase
WHERE job id = 'PU CLERK';
END ;

ORACLE

D-10 Copyright © 2009, Oracle. All rights reserved.

Deleting Data

Delete rows that belong to department 190 from the
EMPLOYEES table.

Example:

DECLARE

v _deptid employees.department id%TYPE := 190;
BEGIN

DELETE FROM employees

WHERE department id = v deptid;
END ;

ORACLE

D-11 Copyright © 2009, Oracle. All rights reserved.

COMMIT and ROLLBACK Statements

e [nitiate a transaction with the first DML command to follow
a COMMIT or ROLLBACK statement.

e Use COMMIT and ROLLBACK SQL statements to terminate
a transaction explicitly.

ORACLE

D-12 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes

Using SQL cursor attributes, you can test the outcome of your
SQL statements.

=10) i 0e)) [el016) Wi NUmber of rows affected by the most recent SQL
statement (an integer value)

SQL%FOUND Boolean attribute that evaluates to TRUE if the most
recent SQL statement affects one or more rows

={e) A3 (ekiw:le1s; sl Boolean attribute that evaluates to TRUE if the most
recent SQL statement does not affect any rows

SQL%ISOPEN Boolean attribute that always evaluates to FALSE

because PL/SQL closes implicit cursors immediately
after they are executed

ORACLE

D-13 Copyright © 2009, Oracle. All rights reserved.

IF, THEN, and ELSIF Statements

For a given value entered, return a calculated value.
Example:

IF v _start > 100 THEN

v _start := 2 * v start;
ELSIF v start >= 50 THEN

v_start := 0.5 * v start;
ELSE

v_start := 0.1 * v start;
END IF;

ORACLE

D-14 Copyright © 2009, Oracle. All rights reserved.

Basic Loop

Example:

DECLARE
v_ordid order items.order id%TYPE := 101;
v_counter NUMBER(2) := 1;
BEGIN
LOOP
INSERT INTO order items(order id,line item id)
VALUES (v_ordid, v counter);

v_counter := v counter + 1;
EXIT WHEN v counter > 10;
END LOOP;
END;

ORACLE

D-15 Copyright © 2009, Oracle. All rights reserved.

FOR Loop

Insert the first 10 new line items for order number 101.
Example:

DECLARE
v_ordid order items.order id%TYPE := 101;
BEGIN
FOR 1 IN 1..10 LOOP
INSERT INTO order items(order id,line item id)
VALUES (v_ordid, 1i);
END LOOP;
END ;

ORACLE

D-16 Copyright © 2009, Oracle. All rights reserved.

WHILE Loop

Example:

ACCEPT p price PROMPT 'Enter the price of the item: '
ACCEPT p itemtot -

PROMPT 'Enter the maximum total for purchase of item: '

DECLARE

v gty NUMBER (8) := 1;
v_running total NUMBER (7,2) := O0;
BEGIN

WHILE v _running total < &p itemtot LOOP
v gty := v gty + 1;

v_running total := v gty * &p price;
END LOOP;

ORACLE

D-17 Copyright © 2009, Oracle. All rights reserved.

Controlling Explicit Cursors

1 No

DECLARE —| OPEN |—| FETCH Yes CLOSE
* Create a * |[dentify * Load the * Test for * Release
named the active current existing the active
SQL area. set. row into rows. set.
variables. e Return to
FETCH if
rows are
found.
ORACLE

D-18 Copyright © 2009, Oracle. All rights reserved.

Declaring the Cursor

Example:

DECLARE
CURSOR cl IS
SELECT employee id, last name
FROM employees;

CURSOR c2 IS
SELECT *
FROM departments
WHERE department id = 10;
BEGIN

ORACLE

D-19 Copyright © 2009, Oracle. All rights reserved.

Opening the Cursor

Syntax:

OPEN cursor name;

 Open the cursor to execute the query and identify the
active set.

* |f the query returns no rows, no exception Iis raised.
« Use cursor attributes to test the outcome after a fetch.

ORACLE

D-20 Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor

Examples:

FETCH cl INTO v _empid, v _ename;

OPEN defined cursor;

LOOP
FETCH defined cursor INTO defined variables
EXIT WHEN ...;
-- Process the retrieved data
END;

ORACLE

D-21 Copyright © 2009, Oracle. All rights reserved.

Closing the Cursor

Syntax:

CLOSE cursor name;

* Close the cursor after completing the processing of the
rows.

 Reopen the cursor, if required.

Do not attempt to fetch data from a cursor after it has been
closed.

ORACLE

D-22 Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description

$ISOPEN BOOLEAN |Evaluates to TRUE Iif the cursor is open

$NOTFOUND |BOOLEAN |Evaluates to TRUE if the most recent
fetch does not return a row

$FOUND BOOLEAN |Evaluates to TRUE if the most recent
fetch returns a row; complement of $NOTFOUND

$SROWCOUNT |NUMBER Evaluates to the total number of rows returned
so far

ORACLE

D-23 Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

Retrieve employees one by one until there are no more left.
Example:

DECLARE
CURSOR cl IS
SELECT employee id, last name
FROM employees;
BEGIN
FOR emp record IN cl LOOP
-- implicit open and implicit fetch occur
IF emp record.employee id = 134 THEN

END LOOP; -- implicit close occurs
END ;

ORACLE

D-24 Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause

Retrieve the orders for amounts over $1,000 that were
processed today.

Example:

DECLARE
CURSOR cl 1IS

SELECT customer id, order id

FROM orders

WHERE order date = SYSDATE
AND order total > 1000.00

ORDER BY customer id

FOR UPDATE NOWAIT;

ORACLE

D-25 Copyright © 2009, Oracle. All rights reserved.

WHERE CURRENT OF Clause

Example:

DECLARE
CURSOR cl IS
SELECT salary FROM employees
FOR UPDATE OF salary NOWAIT;
BEGIN
FOR emp record IN cl LOOP
UPDATE ...
WHERE CURRENT OF cl;
END LOOP;
COMMIT;
END ;

ORACLE

D-26 Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors

« Reference the standard name in the exception-handling
routine.
 Sample predefined exceptions:
— NO DATA FOUND
— TOO MANY ROWS
— INVALID CURSOR
— ZERO DIVIDE
— DUP_ VAL ON INDEX

ORACLE

D -27 Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined
Oracle Server Errors: Example

Syntax:

BEGIN SELECT ... COMMIT;
EXCEPTION

WHEN | NO DATA FOUND THEN
statementl;
statement2;

WHEN| TOO MANY ROWS THEN
statementl;

WHEN OTHERS THEN
statementl;
statement2;
statement3;

END;

ORACLE

D-28 Copyright © 2009, Oracle. All rights reserved.

Non-Predefined Error

Trap for Oracle server error number —2292, which is an integrity
constraint violation.

DECLARE
e_products_invalid EXCEPTION} *__<::>
PRAGMA EXCEPTION INIT (

e products invalid, -2292); <__'<::>
v_message VARCHAR2 (50) ;

BEGIN
EXCEPTION ;

WHEN e products_invalid |[THEN
:g message := 'Product ID
specified is not wvalid.';

END ;

ORACLE

D-29 Copyright © 2009, Oracle. All rights reserved.

User-Defined Exceptions

Example:

[DECLARE]

e amount remaining EXCEPTION; < <i>
BEGIN

RAISE e amount remaining; < <§>
EXCEPTION

WHEN |e amount remaining | THEN “ <§>

:g message := 'There is still an amount
in stock.';

END;

ORACLE

D-30 Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

Syntax:

raise application error (error number,
messagel, {TRUE | FALSE}]);

 Enables you to issue user-defined error messages from
stored subprograms

e |Is called from an executing stored subprogram only

ORACLE

D-31 Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

* |s used in two different places:
— Executable section
— Exception section

e Returns error conditions to the user in a manner consistent
with other Oracle server errors

ORACLE

D-32 Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Oracle JDeveloper 10g

e Oracle |Developer : Start Page e

File Edit Miew Search Mavigate RBun Debug Refactor VYWerzioning Tools Window Help

FeoEa -0 90 YXEBE A4 aide- - &-bEE.

il A pplications lﬁBﬂCD...] (=]||(@)start Page] -

RREQFD: FE2000Q

Applicatil:nns =
ORACLE

Developing J2EE Applic

Learn about m Get started on your El Ly
JDeveloper oW s

% What's new #« Check for product |

w CrE

Updates anc new @ Cri

— # Use the tutorials features a

"= Start Page - Structure =]

. Create a new application —

& Work with samples hd HE Cre

)) % Dpen an existing & CIe

e nnlme_ application and project Be

demonstrations

Cre

« Import an existing |2EE # Crg

L Esﬁgragitatinn application from the file m3

sveterm

Pres=g
(Check out existing « Einl |
q i | »
Help Content I 1 | | k |
| Editing

ORACLE

E-2 Copyright © 2009, Oracle. All rights reserved.

Connection Navigator

4K Connections Mavig... l:
X BY

i Connections

------ 7] Application Server

----- D Databaze

{7 UDDI Registry

------) wehDAY Server

ORACLE

E-3 Copyright © 2009, Oracle. All rights reserved.

Application Navigator

Applicatiu:uns Mavigator |
EREQE D S

Applications

ORACLE

E-4 Copyright © 2009, Oracle. All rights reserved.

Structure Window

"= EMPLOYEES - Structure |

g

&[] Columns

E}l:l Constraints

Ll EMP_LAST_MAME_MM
w58 EMP_DEPT_FK
- E= EMP_EMP_ID_PE
f-E= EMP_EMAIL_LIK
3 EMP_HIRE_DATE_MN
- 58 EMP_JOE_FE.
F EMP_sALARY_MIN
f- B8 EMP_MANAGER_FK
3 EMP_JOB_NN

G EMP_EMAIL NN

-] Indexes

ORACLE

E-5 Copyright © 2009, Oracle. All rights reserved.

Editor Window

S ADD JOR_RISTORY i

PROCEDURE add_job_history [
i p_emp_id Jjoh_history.emnplovee_id¥type B
, p_start_date joh_history.start_dateitvpe
. P_end_date job_history.end_dateXtype
, P_Jjoh_id joh_history. job_idEtype
, p_department_id Jjob_history.department_id¥type
)

IS

BEGIN

IMSERT INTO job_history (emplowee_id, start_date, end_date,
joh_id, department_id)
VALUES Cp_emp_id, p_start_date, p_end_date,
h_qjob_id, p_department_id):
END add_joh_history;

Source | A e "]

ORACLE

E-6 Copyright © 2009, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following
steps:

1. Create a database connection.
2. Create a deployment profile.
3. Deploy the objects.

ORACLE

E-7 Copyright © 2009, Oracle. All rights reserved.

Creating Program Units

= ADD JOF_HISTORY | [FOITEST_IDEY 2 hd
il

FUNCTION "TEST_JDEW"
RETURN VARCHARZ2
AS
EEGIN
RETURNC' '3 ;
END;

Source | A]

Skeleton of the function

ORACLE

E-8 Copyright © 2009, Oracle. All rights reserved.

Compiling

Cu:umpiler' - Laog |
E Project: fhomejoraclefjdevhomefsystem foracle jdeveloper.10.1.3. 42 70 /DefaultWorkspace fProject] jpr
-2 PROCEDURE TEACH_C.ADD_JOB_HISTORY.pls

----- @ Error{lo, =y PLSSOL: S0L Statement ignored

- lﬁ Error{l2 35 PL/SOL: ORA-00917: mizzing comma

T comprer OB

Compilation with errors

Messages - Log |

Compiling...
[12:37:35 PM] Successtul compilation: © errors, O warnings.

Compilation without errors

ORACLE

E-9 Copyright © 2009, Oracle. All rights reserved.

Running a Program Unit

B X
Parametersz;
Parameter | Data Type | Mode

P_EMP_ID MUMEER. I
P_START_DATE DATE I
P_EMD_DATE DATE I
P_JOB_ID WARCHARZ(LON I
P_DEPARTMENT_ID MUMEER I

PLf5QL Block

DECLARE -
F_EMP_ID WUMEER,
F_START_DATE DATE;
F_EWD_DATE DATE;
F_JOB_ID WARCHARZ{1073;
F_DEPAETHENT_ID NMUMEER;

BEGIN
F_EMP_ID := NULL;
P_START_DATE := NULL;
P_EWD_DATE := MWULL; [
F_I0B_ID := NULL;
P_DEPARTHMENT_ID := MULL;

ADD_JOB_HISTORN L]
P EME Th —-~ B EMP Th | 7
4 |+

i
|T| | Ok *J l Cancel]

ORACLE

E-10 Copyright © 2009, Oracle. All rights reserved.

Dropping a Program Unit

[Drop Confirmation x

Areyou sure you want ta drop PROCEDLRE
1 TEACH_C ADD_|OB_HISTORYY

ORACLE

E-11 Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

« JDeveloper supports two types of debugging:
— Local
— Remote
* You need the following privileges to perform PL/SQL
debugging:
— DEBUG ANY PROCEDURE
— DEBUG CONNECT SESSION

ORACLE

E-12 Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

- - PFmmmEEeeeeeese e by

[#--Erwironment = Database Connections
""" iCCHE"at':'rS YWalidate date and time default values
...... nt

v | Generate PLYSQL Debug Information
[A udit i - :
[+ Code Editor SOLPlus Executable:
------ Code Style
------ Compare | | | Browse...
...... s On Windows, enter the path ta the SQL"Plus executable. On UMK, you
TeieERes CanmeEEEmne alzo need to specify the xterm cammand. Far example:
s e e usrfbinfxterm -e foraclefhinsqlplus

&1 Debugger fuzrfbinf f foinf=qlp
------ Deployment il | Registered [DBEC Drivers:

[#--Diagratms -
------ Documentation m e |
------ Extenzions
------ File Types
------ Clobal lgnore List
------ Hitp Analyzer
------ JavaVizual Editor | =

[F-- 5P and HTML Wisual Edit "
------ Profiler !

--Tasks Driver Clazs;

[+--Werzianing Lib

= ibrary:
------ Web Browser and Proxy | - i i
(] ' [|»] Claszpath;

| Help | | (8].4 ﬂ | Cancel l

ORACLE

E-13 Copyright © 2009, Oracle. All rights reserved.

Setting Breakpoints

S EMPLOYEE AL |

PROCEDURE emplovee_sal(id NUMBER) IS
emp enploveesXE0WTYPE;
FUNCTION tax{salary VARCHARZ) RETURN NUMEER IS

BEGIN

RETURN salary * 0.825;
END tax; g
BEGIN o
SELECT * INTO emp
FROM EMPLOYEES WHERE emplovee_id = id;
@ DBEM5_0UTPUT.PUT_LINEY 'Tax: '||tax(emp.salary)]; =

END

] e

Source | A

ORACLE
Copyright © 2009, Oracle. All rights reserved.

E-15

Stepping Through Code

Debug l
o883 0-@- 96 EH A4 i da- - &-bES E
D connections | {Eapplicati.. | [2]|| S EMPLOYEE_SAL | -
ﬂ w '?’ PROCEDURE emplowvee_sal(id NUMBER) IS (|
; : emp emploveeskERE0WNTYPE; B
D Fackages - FUNCTION tax({salary VARCHAR2) RETURMN NUMEER I%
EIE] Procedures BEGIN
- & ADD_DEPT RETURN salary * 0.825;
B ADD_JOB_HISTORY END tax; A
e E B ME_TRAMS EEGIN
...... E EMPLOYEE_SAL SELECT * INTO emp
______ ni FROM EMFLOYEES WHERE emplowee_id = 1d;
EGH-DEPMTMENTS “ @ DBMS_OUTPUT.PUT_LINEC'Tax: '|[tax(emp.salary)):)
...... HELLO END:
------ B LOG_USAGCE
B RAISE_SALARY
B READ_FILE
B SAL_STATUS i
- .2 SFCURE DML x >
L i b Source | 4]

ORACLE

E-16 Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

e List the key features of Oracle SQL Developer
* |nstall Oracle SQL Developer

« ldentify menu items of Oracle SQL Developer
 Create a database connection

« Manage database objects

 Use SQL Worksheet

 Execute SQL statements and SQL scripts
 Create and save reports

ORACLE

F-2 Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

e Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

 You can connect to any target Oracle database schema
using standard Oracle database authentication.

ORACLE

F-3 Copyright © 2009, Oracle. All rights reserved.

Key Features

 Was developed in Java

e Supports Windows, Linux, and Mac OS X platforms

e Uses the JDBC Thin driver for default connectivity
 Does not require an installer

 Connects to any Oracle Database version 9.2.0.1 and later
* |Is bundled with JRE 1.5

ORACLE

F-4 Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

® C:isqldeveloper

- File Edit View Favorites Tools Help .';.
: o »
: @ Back - (&g l% #}_.»' Search E?'l Folders
- Address |3 Chsgldeveloper w 30
P—
Folders X .
> =N sqldeveloper sgldeveloper
[EI ide E 1KE
-) idbe
E stracting rt.jar) idev
B idk i sgldeveloper . exe
| Cancel |) it 1

) lib _-;. | upgrade_guidelines.txt
1 rdbms b |ﬁ_ Tewxt Document v
Pl
—

¢ | y | »

ORACLE

F-5 Copyright © 2009, Oracle. All rights reserved.

Menus for SQL Developer

Oracle SQL Developer - 0O X

File Edit View Navigate Run Source VYersioning Migration Iulnls Help
CES| 9 M X Eé Bp o8- I3
&2 I

yadeas papualxg%

ziaddiug E.

_onnections Editing

ORACLE

F-6 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

e You must have at least one database connection to use
SQL Developer.

* You can create and test connections for multiple:
— Databases
— Schemas

 SQL Developer automatically imports any connections
defined in the tnsnames. ora file on your system.

* You can export connections to an XML file.

« Each additional database connection created is listed in
the connections navigator hierarchy.

ORACLE

F-7 Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

a Connections |

@l @ ¢ | New / Select Database Connection x

------ a Conhnections

Cannecti.. Cannecti.. | Connection Mame |m~;|:|:unnecti|:un |

E nmew Connection
Import Connections U=zername |Dra1 |

Pazsword |f‘""'”'r |

Save Password

Oracle

Role default [] of Authentication
D> Connection T¥Pe | pasic - [] Proxy Connection

Hozthame |In:n:a|hn:|st |
Port 11521 |
(®) sID |-:|rcl |

|

() Service name |

Status [Success

| Help l | Save ‘ | Clear | | Test | l Connect k‘ | Cancel |

ORACLE

F-8 Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
 Browse through many objects in a database schema
Do a quick review of the definitions of objects

File Edit Yiew Navigate Run Source VYersioning Migration Tools Help
RoBE9 906 XEG Q-0 5 =
g}_ |:__'| |a [;] [myconnection FHEMPLOYEES [E] y
@ EE} Y Columns | Data| Constraints | Grants | Statistics | Triggers 'IJ g
2 = m
=-fEY Connections ~l 1 B Actions... ; §
Ea myconnection Column Mame | Data Type |E} Mullable |Data De |
m
E-{3 Tables EMPLOYEE_ID NUMBER(S,0) Mo frull) .
R -4l COUNTRIES FIRST_MAME VARCHARZ(20 BYTE) ¥ I 5
o[DEPARTMENTS - 5 2 [Xes ndlh
-8 [L& ST_MAME VARCHARZ(ZS BYTE) Mo frull)
- |OB_GRADES EmaIL YARCHARZ(Z5 BYTE) Mo frull) I'gl
- JoB_HISTORY PHOME_MUMEER WARCHARZ(Z0 BYTE) Tes () e
L =
E J0OBS HIRE_DATE DATE Mo fnully .
E HEIS SIS |CE_ID YARCHARZ (10 BYTE Mo frull
G- REGIONS
- (38 Views oA LAY MUMEER{S, 2 Yes frull)
5138 Indexes COMMISSION_PCT MUMEBER(Z, 2 Yes frull)
- [Packages b A SER_ID MUMEER{&, 0 Yes frull)
-8 Procedures DEPARTMEMT_ID MUMBERDS,) fes frully
#-{ji Functions vl ﬂ
& { £ b L.

ORACLE

F-9 Copyright © 2009, Oracle. All rights reserved.

Creating a Schema Object

 SQL Developer supports the
creation of any schema object

by:
— Executing a SQL statement in
SQL Worksheet
— Using the context menu
» You can edit the objects by D
using an edit dialog box or one |= & gamectrs
of many context-sensitive =
menus. @ perresn
* You can view the DDL for jjj}? sepyHer
adjustments such as creating a ;jjj Impor D
new object or editing an B

existing schema object.

ORACLE

F-10 Copyright © 2009, Oracle. All rights reserved.

Creating a New Table: Example

B Create Table x
Schema: | ORAL - | [v] Advanced E
Mame: DEPARTMENTS |
Table Type: (5) Marmal () External () Index Crganized () Temparary (Tranzaction) () Temporary (Seszion)

(Gl . columns: Column Properties
F
—m DEPARTMEMT_ID | + | Mam e IZ:lZ:ZlLL”'.'”'-ll |
. DEPARTMENT_MAME L
""" Primary ey LOCATION_ID %
...... Uri R - | | Datatype: (=) Simple () Complex
mq.ue onstraints MANA CER_ID oo il e
""" PEEIEL W37 COLUMNL & Type: [VARCHAR? %
------ Check Constraints |_|
...... |ndexeg .@ SIEE |2|:I |
------ Column Sequences Units: | vl
------ Table Properties B -
------ Lok Parameters
[=}-Partitianing
------ Fartition Definitions
e Subpartition Templates Default: |
...... Comment [] Cannot be MULL
------ oL

Comment:

Help | l oK i | Cancel]
ORACLE

F-11 Copyright © 2009, Oracle. All rights reserved.

Using SQL Worksheet

 Use SQL Worksheet to enter and execute SQL, PL/SQL,
and SQL *Plus statements.

e Specify any actions that can be processed by the database
connection associated with the worksheet.

Help [myconnection | (=]
Database Copy EERERSe 98 ¢ |myconnection = |

Databaze Export Enter 5L Statement;
Databasze Diff |

hMonitor Sezsions :
2l SOl Warksheet I §

External Toals...

Ereferences.. [Results | script Qutput |'|1,:-.‘j Explain |?£]Autn:nt... |~g='j,| &

Rezults:

ORACLE

F-12 Copyright © 2009, Oracle. All rights reserved.

Using SQL Worksheet

000,

Dbm onnection [=]
?) ﬁ B & myconnection w |
Efhter SQLStatemgnt:

[Resuits| [script Qutput |E] Explain |E]Autn:utrace |[3DEMS Qutput | GO
Rezults:

ORACLE

F-13 Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

[myconnection (]
Ei- El E% a ﬁl E ﬁ é 0.39192802 seconds mycannection *r]
Enter SOL Statement:

SELECT 1aSt_nahE, salary FROM emplovees
WHERE =alary = 10000;

SELECT last_name "Name", salary¥lZ "Annual Salary”
FROH emplovees;

[Results _ﬂ Script Output |E‘3Explain |§‘E,ﬂﬁutntrace |5.EDEMS Cutput ';;-;‘l (S

Rezult=:

LasT_MaME (B saLary
1 Hartztein 13000
Z Higgins 12000
3 king 24000
4 Kochhar 17000
5 De Haan 17000
6 Zlotkey 10500

ORACLE

F-14 Copyright © 2009, Oracle. All rights reserved.

Viewing the Execution Plan

[myconnection (]
D‘ EI Q a 'ﬁ' E h é My connection v]
Enter QL Statement;

SELECT emplovee_id, last_name, job_id, salary
FROM emplovees
WHERE salary > 10000;]

= Results |;| Script Cutput IEE:-:IﬂIEtiﬂ ‘E‘]Autmrace |L:5!,DEMS Qutput | '.;5 ...

OPERATION OBJECT_NAME
=4 SELECT STATEMENT
E1-B TABLE ACCESS EMPLOYEES
=38 Filter Predicates
e SALARY>10000

ORACLE

F-15 Copyright © 2009, Oracle. All rights reserved.

Formatting the SQL Code

[myronnection | (=]
B- EI @ a @ | E ﬁ 0 184321594 seconds |m5.-'u:u:unneu:tiu:un v|
Enter SOL Statement:
select emplovee_id, department_id, job_id, salar
Before plovee_id, dep _id, Jjoh_id, v
el | from employees where Salary | [Execute Statement Fa
- 3 3 1 [
formatt|ng and hire_date Tike '%53°; ﬁ Execute Explain Plan F&
ﬁ Autotrace F10
% Bun script F5
EL print File Crl-p
& Clear Ctrl-D
Y. @ I
[}RESUHS !;lﬂtript Output |E]EX[J|' &' 5L Histary 3
Rezult=:
& cur Ctrl-¥ T
Copy Ctrl-C
Pazte Crel-Y
Select All Ctrl-A
Compile Ctrl4-5hift-Fa
Query Builder
Refactaring b
Format E
Popup Dezcribe Shift-F4
Code Template Ctrl+5hift-T .
Enter 5OL Statement:
SELECT enplovee_id, g
department_id .
After joh_id ,
5 pr— calary
fOI’mattIng FROM emplovees
WHERE s=alary > 10000

AND hire_date LIKE '%E9';]

ORACLE

F-16 Copyright © 2009, Oracle. All rights reserved.

Snippets are code fragments that may be just syntax or

examples.

ORACLE

F-17

Using Snippets

File Edit Mavigate RBun Source Yersioning Migration Tools Help

KRl = N

E

Ela] Conn

@Y
=@ m

ﬁ:lil Connections
Reports

@] Files

i Captured Models

1 Canverted Models
@8 Find DB Ohject

ilﬂ Wersioning MNavigatar

= -

O]
=

ﬁ é 1.843215945E|:Dnd5|m':.-'|:|:n

Log
Debugger

@ Fun Manager

Ctr+5hift-L

L

(&l soLHistory

& Extended Sea_rch

Fi

d,

)

Ig_:Egl;

E| Shippets

BJExplain |?£_}Aut|:utral:e |-'3.| @

Lt

v Statusz Bar
Toolbars

E’E} Befresh

|

Copyright © 2009, Oracle. All rights reserved.

Using Snippets: Example

Eim}tﬂnnmiﬂn E]
B- EI @ a E:i E ﬁ é myconnection '|
Enter 50L Statement: B
select] CONCAT(charl, char2) &) snippets
: G 2
Insertlng a > Character Functions -
snippet CHR{)
COMCAT{Charl, char)
INITCAR{Char)
LOWWER{Char)
II_I'?_ﬁ | S PR | . - aam ™
i
Ei-m}tﬂnneniﬂn E]
E}' EI @ a 'E:i' E ﬁ é’ myconnection v|
L. Enter SOL Statement: B
Ed|t|ng the Select CONCAT(Tirst_name,last_name) = snippets
. > |From empl | 2
plovees E 4
snippet £
Character Functions -

CHR{)

COMCAT{Charl, char)
IMITCA P Char)
LOWER(Char)

[T T I 1

ik W

ORACLE

F-18 Copyright © 2009, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of the
DBMS OUTPUT package statements.

D- teach d |

>ERRO W8 & 135308599 seconds teach_d |

Enter 50L Statement:
SET serveroutput ON|
DECLARE

vw_Thame VARCHARZ (200 ;
BEGIN

SELECT first_name INTO v_tfhname FROM emplowvees WHERE emplowee_ijd=100;

£

dbms_output. put_Tlinelv_fthnamel;
END;

i W

[Results %Script Qutput E}Explain |§@Autmrace |'\3,DBMS Dutput f_{_’l A Cutpt
¢d8& |

anonymous block completed
Steven

ORACLE

F-19 Copyright © 2009, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units.

[teach d |4] ADD_JOB_HISTORY [ﬂ ADD_JOB HISTORY l =
- L]
| @8- 4> &k ~

create or replace
PROCEDURE add_job_history

O p_emp_id job_history. emplovee_idktype

, p_start_date job_history, start_dateftype

. b_end_date job_histary. end_date¥type

, p_Jjoh_id job_history., job_idistype

. p_department_id job_histary.departnent_id%type

)
|
BEGIN

INSERT job_history (emplovee_id, start_date, end_date,

job_id, department_id)
n_emp_id, p_start_date, p_end_date, p_Jjoh_id, p_departnent_id);
history;

valP
END adaMTe

ORACLE

F-20 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Procedure

» Create PL/SQL Procedure >

Schema: | ORA4L -| E
E;'Cnnnectiuns | Mame: | emp_list |
= W V7
(- B Wi
EE Indexes r Parameters |/ ooL |
[+-{[ff Packages
E]EE Procedures Mame Type Mode Default Walue =ﬂ- |
. 1 = MewProcedure... VARCHARZ _
T - X

[] Add MewSource In Lowercase

E’[ﬂ Refrezh

? Apply Filter... @

4

Compjle Invalid
Compile All

= L T

PE DY REE =

L gy e g oy ey L

- [@ Materialized Wiews Logs
{39 Synonyms

@ [we | e
@

ORACLE

F-21 Copyright © 2009, Oracle. All rights reserved.

is)

Using SQL*Plus

 SQL Worksheet does not support all SQL*Plus statements.
 SQL*Plus statements that are not supported by SQL

Worksheet are:

— append

— archive

— attribute

— break

— change

— clear

ORACLE

F-22 Copyright © 2009, Oracle. All rights reserved.

Database Reporting

 SQL Developer provides you with a number of predefined
reports about your database and objects.

 The reports are organized into categories.
* You can create your own customized reports too.

..Repurts

|:|AII Reports
13 I-.-'-"'

[A Lijariary Repuris
. - About vour Database
I = All Ohjects
H-{= Application Express
-2 ASH and AR
F-Z Charts
E, Database Administration
@ Crata Dictionary
...E,JDI-JE
- PL/Sq)
@ SeCUrity
E, Streams
[+-{= Table
- XML
[+ {= Migration Reparts
[#-{Z Uzer Defined Reparts

ORACLE

F-23 Copyright © 2009, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

EH:I Reports ’ P Ei |DEFCDnneu:tinn1 -
=-[_] Data Dictionary Repart
; o EMPLOYEE ID | FIRST MAME | LAST MNAME
¥ Create Report Dialog [About Your Datab _ _
[T Database Adminis 201 Michael Hartztein E
. k | | D Takle 204 Hermann Baer
arme tnp_sa :
- "D PLSGEL 205 Shelley Higgins
Description kmplnyees weith zalary==10000 | D Security 100 Steven King
. - oL
ToolTip | | D Jobs 101 Meena Kochhar
: 102 Lex DeHsan | |
SELECT ewployee id, last name, ji* D Strearns
FROM E]]lIJlDYEES D All ':'b_IE!D‘tS 108 Mancy zreenbery
THERE =zalarvy »= 10000: D Data Dictionary 114 Den Raphaely
145 John Ruszell
Help | |;f Lpply | | Carcel ” 146 Karen Farthers ” |1
4 S kA o 3

ORACLE

F-24 Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

 Browse, create, and edit database objects
 Execute SQL statements and scripts in SQL Worksheet
 Create and save custom reports

ORACLE

F-25 Copyright © 2009, Oracle. All rights reserved.

	ep_cover
	intro
	les_01
	les_02
	les_03
	les_04
	les_05
	les_06
	les_07
	les_08
	les_09
	les_10
	les_11
	les_12
	xpp_C
	xpp_D
	xpp_E
	xpp_F

