
Copyright © 2009, Oracle. All rights reserved.

Working with Composite
Data Types

Copyright © 2009, Oracle. All rights reserved.6 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Create user-defined PL/SQL records
• Create a record with the %ROWTYPE attribute
• Create an INDEX BY table
• Create an INDEX BY table of records
• Describe the differences among records, tables, and tables

of records

Copyright © 2009, Oracle. All rights reserved.6 - 3

Composite Data Types

• Can hold multiple values (unlike scalar types)
• Are of two types:

– PL/SQL records
– PL/SQL collections

— INDEX BY tables or associative arrays
— Nested table
— VARRAY

Copyright © 2009, Oracle. All rights reserved.6 - 4

Composite Data Types

• Use PL/SQL records when you want to store values of
different data types but only one occurrence at a time.

• Use PL/SQL collections when you want to store values of
the same data type.

Copyright © 2009, Oracle. All rights reserved.6 - 5

PL/SQL Records

• Must contain one or more components (called fields) of
any scalar, RECORD, or INDEX BY table data type

• Are similar to structures in most 3GL languages (including
C and C++)

• Are user defined and can be a subset of a row in a table
• Treat a collection of fields as a logical unit
• Are convenient for fetching a row of data from a table for

processing

Copyright © 2009, Oracle. All rights reserved.6 - 6

Creating a PL/SQL Record

Syntax:

TYPE type_name IS RECORD

(field_declaration[, field_declaration]…);

field_name {field_type | variable%TYPE

| table.column%TYPE | table%ROWTYPE}

[[NOT NULL] {:= | DEFAULT} expr]

identifier type_name;

1

2

field_declaration:

Copyright © 2009, Oracle. All rights reserved.6 - 7

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of a new
employee.

Example:

...
TYPE emp_record_type IS RECORD
(last_name VARCHAR2(25),
job_id VARCHAR2(10),
salary NUMBER(8,2));

emp_record emp_record_type;
...

Copyright © 2009, Oracle. All rights reserved.6 - 8

PL/SQL Record Structure

Example:

100 King AD_PRES

employee_id number(6) last_name varchar2(25) job_id varchar2(10)
Field2 (data type) Field3 (data type)Field1 (data type)

Field2 (data type) Field3 (data type)Field1 (data type)

Copyright © 2009, Oracle. All rights reserved.6 - 9

%ROWTYPE Attribute

• Declare a variable according to a collection of columns in a
database table or view.

• Prefix %ROWTYPE with the database table or view.
• Fields in the record take their names and data types from

the columns of the table or view.

Syntax:

DECLARE
identifier reference%ROWTYPE;

Copyright © 2009, Oracle. All rights reserved.6 - 11

Advantages of Using %ROWTYPE

• The number and data types of the underlying database
columns need not be known—and in fact might change at
run time.

• The %ROWTYPE attribute is useful when retrieving a row
with the SELECT * statement.

Copyright © 2009, Oracle. All rights reserved.6 - 12

%ROWTYPE Attribute

...

DEFINE employee_number = 124

DECLARE

emp_rec employees%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps(empno, ename, job, mgr,

hiredate, leavedate, sal, comm, deptno)

VALUES (emp_rec.employee_id, emp_rec.last_name,

emp_rec.job_id,emp_rec.manager_id,

emp_rec.hire_date, SYSDATE, emp_rec.salary,

emp_rec.commission_pct, emp_rec.department_id);

END;

/

Copyright © 2009, Oracle. All rights reserved.6 - 13

Inserting a Record
by Using %ROWTYPE

...

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT employee_id, last_name, job_id, manager_id,

hire_date, hire_date, salary, commission_pct,

department_id INTO emp_rec FROM employees

WHERE employee_id = &employee_number;

INSERT INTO retired_emps VALUES emp_rec;

END;

/

SELECT * FROM retired_emps;

Copyright © 2009, Oracle. All rights reserved.6 - 14

Updating a Row in a Table
by Using a Record

SET SERVEROUTPUT ON

SET VERIFY OFF

DEFINE employee_number = 124

DECLARE

emp_rec retired_emps%ROWTYPE;

BEGIN

SELECT * INTO emp_rec FROM retired_emps;

emp_rec.leavedate:=SYSDATE;

UPDATE retired_emps SET ROW = emp_rec WHERE

empno=&employee_number;

END;

/

SELECT * FROM retired_emps;

Copyright © 2009, Oracle. All rights reserved.6 - 15

INDEX BY Tables or Associative Arrays

• Are PL/SQL structures with two columns:
– Primary key of integer or string data type
– Column of scalar or record data type

• Are unconstrained in size. However, the size depends on
the values that the key data type can hold.

Copyright © 2009, Oracle. All rights reserved.6 - 16

Creating an INDEX BY Table

Syntax:

Declare an INDEX BY table to store the last names of
employees:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table%ROWTYPE
[INDEX BY PLS_INTEGER | BINARY_INTEGER
| VARCHAR2(<size>)];

identifier type_name;

...
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;
...
ename_table ename_table_type;

Copyright © 2009, Oracle. All rights reserved.6 - 18

INDEX BY Table Structure

Unique key Value
... ...

1 Jones
5 Smith
3 Maduro

... ...

PLS_INTEGER Scalar

Copyright © 2009, Oracle. All rights reserved.6 - 19

Creating an INDEX BY Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY PLS_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...
...

END;

/

Copyright © 2009, Oracle. All rights reserved.6 - 20

Using INDEX BY Table Methods

The following methods make INDEX BY tables easier to use:
• EXISTS

• COUNT

• FIRST and LAST

• PRIOR

• NEXT

• DELETE

Copyright © 2009, Oracle. All rights reserved.6 - 21

INDEX BY Table of Records

Define an INDEX BY table variable to hold an entire row from a
table.

Example:

DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE
INDEX BY PLS_INTEGER;

dept_table dept_table_type;

-- Each element of dept_table is a record

Copyright © 2009, Oracle. All rights reserved.6 - 23

INDEX BY Table of Records: Example

SET SERVEROUTPUT ON
DECLARE

TYPE emp_table_type IS TABLE OF
employees%ROWTYPE INDEX BY PLS_INTEGER;

my_emp_table emp_table_type;
max_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..max_count
LOOP
SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;
/

Copyright © 2009, Oracle. All rights reserved.6 - 24

Nested Tables

1
2
3
4
..

2 GB

Bombay
Sydney
Oxford
London
....

Copyright © 2009, Oracle. All rights reserved.6 - 26

Bombay
Sydney
Oxford
London
....

VARRAY

Tokyo

1
2
3
4
..

10

Copyright © 2009, Oracle. All rights reserved.6 - 27

Summary

In this lesson, you should have learned how to:
• Define and reference PL/SQL variables of composite data

types
– PL/SQL record
– INDEX BY table
– INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE attribute

Copyright © 2009, Oracle. All rights reserved.6 - 28

Practice 6: Overview

This practice covers the following topics:
• Declaring INDEX BY tables
• Processing data by using INDEX BY tables
• Declaring a PL/SQL record
• Processing data by using a PL/SQL record

