
Copyright © 2009, Oracle. All rights reserved.

Using More Package Concepts

Copyright © 2009, Oracle. All rights reserved.4 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Overload package procedures and functions
• Use forward declarations
• Create an initialization block in a package body
• Manage persistent package data states for the life of a

session
• Use PL/SQL tables and records in packages
• Wrap source code stored in the data dictionary so that it is

not readable

Copyright © 2009, Oracle. All rights reserved.4 - 3

Overloading Subprograms

The overloading feature in PL/SQL:
• Enables you to create two or more subprograms with the

same name
• Requires that the subprogram’s formal parameters differ in

number, order, or data type family
• Enables you to build flexible ways for invoking

subprograms with different data
• Provides a way to extend functionality without loss of

existing code
Note: Overloading can be done with local subprograms,
package subprograms, and type methods, but not with stand-
alone subprograms.

Copyright © 2009, Oracle. All rights reserved.4 - 5

CREATE OR REPLACE PACKAGE dept_pkg IS

PROCEDURE add_department(deptno NUMBER,
name VARCHAR2 := 'unknown', loc NUMBER := 1700);

PROCEDURE add_department(

name VARCHAR2 := 'unknown', loc NUMBER := 1700);

END dept_pkg;

/

Overloading: Example

Copyright © 2009, Oracle. All rights reserved.4 - 6

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
PROCEDURE add_department (deptno NUMBER,

name VARCHAR2:='unknown', loc NUMBER:=1700) IS
BEGIN
INSERT INTO departments(department_id,
department_name, location_id)

VALUES (deptno, name, loc);
END add_department;

PROCEDURE add_department (
name VARCHAR2:='unknown', loc NUMBER:=1700) IS

BEGIN
INSERT INTO departments (department_id,
department_name, location_id)

VALUES (departments_seq.NEXTVAL, name, loc);
END add_department;
END dept_pkg;
/

Overloading: Example

Copyright © 2009, Oracle. All rights reserved.4 - 7

Overloading and the STANDARD Package

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded. An example is the
TO_CHAR function:

• A PL/SQL subprogram with the same name as a built-in
subprogram overrides the standard declaration in the local
context, unless you qualify the built-in subprogram with its
package name.

FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 DATE, P2 VARCHAR2) RETURN
VARCHAR2;
FUNCTION TO_CHAR (p1 NUMBER, P2 VARCHAR2) RETURN
VARCHAR2;

Copyright © 2009, Oracle. All rights reserved.4 - 8

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE award_bonus(. . .) IS
BEGIN

calc_rating (. . .); --illegal reference

END;

PROCEDURE calc_rating (. . .) IS
BEGIN
...

END;
END forward_pkg;
/

Using Forward Declarations

• Block-structured languages (such as PL/SQL) must
declare identifiers before referencing them.

• Example of a referencing problem:

Copyright © 2009, Oracle. All rights reserved.4 - 9

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE calc_rating (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); -- reference resolved!
. . .

END;

PROCEDURE calc_rating (...) IS -- implementation
BEGIN
. . .

END;
END forward_pkg;

Using Forward Declarations

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

Copyright © 2009, Oracle. All rights reserved.4 - 10

CREATE OR REPLACE PACKAGE taxes IS
tax NUMBER;
... -- declare all public procedures/functions

END taxes;
/
CREATE OR REPLACE PACKAGE BODY taxes IS
... -- declare all private variables
... -- define public/private procedures/functions
BEGIN
SELECT rate_value INTO tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes;
/

Package Initialization Block

The block at the end of the package body executes once and is
used to initialize public and private package variables.

Copyright © 2009, Oracle. All rights reserved.4 - 11

Using Package Functions in SQL
and Restrictions

• Package functions can be used in SQL statements.
• Functions called from:

– A query or DML statement must not end the current
transaction, create or roll back to a savepoint, or alter the
system or session

– A query or a parallelized DML statement cannot execute a
DML statement or modify the database

– A DML statement cannot read or modify the table being
changed by that DML statement

Note: A function calling subprograms that break the preceding
restrictions is not allowed.

Copyright © 2009, Oracle. All rights reserved.4 - 12

CREATE OR REPLACE PACKAGE taxes_pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER;

END taxes_pkg;
/
CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
FUNCTION tax (value IN NUMBER) RETURN NUMBER IS
rate NUMBER := 0.08;

BEGIN
RETURN (value * rate);

END tax;
END taxes_pkg;
/

Package Function in SQL: Example

SELECT taxes_pkg.tax(salary), salary, last_name
FROM employees;

Copyright © 2009, Oracle. All rights reserved.4 - 13

Persistent State of Packages

The collection of package variables and the values define the
package state. The package state is:
• Initialized when the package is first loaded
• Persistent (by default) for the life of the session

– Stored in the User Global Area (UGA)
– Unique to each session
– Subject to change when package subprograms are called or

public variables are modified
• Not persistent for the session but persistent for the life of a

subprogram call when using PRAGMA
SERIALLY_REUSABLE in the package specification

Copyright © 2009, Oracle. All rights reserved.4 - 14

Persistent State of Package
Variables: Example

0.4
0.4
0.4

0.4

0.4

0.4

0.4

0.25
0.25
0.25

0.25

0.25

0.25

0.10
0.25

0.4
0.4
0.4

0.8

0.8

0.8

0.4

0.1
0.5

Jones> EXECUTE
comm_pkg.reset_comm (0.5)

9:35

Jones> INSERT
INTO employees(
last_name,commission_pct)
VALUES('Madonna', 0.8);

9:30

11:00
11:01
12:00

10:00

9:00

Time

-Scott> EXECUTE
comm_pkg.reset_comm(0.25)

0.5
-

0.2

Jones> ROLLBACK;
EXIT ...
EXEC comm_pkg.reset_comm(0.2)

0.5

-Jones-

STD MAX

Scott> EXECUTE
comm_pkg.reset_comm(0.6)

Err –20210 'Bad Commission'

State for: -Scott-

Events STD MAX

Copyright © 2009, Oracle. All rights reserved.4 - 15

CREATE OR REPLACE PACKAGE BODY curs_pkg IS
CURSOR c IS SELECT employee_id FROM employees;
PROCEDURE open IS
BEGIN
IF NOT c%ISOPEN THEN OPEN c; END IF;

END open;
FUNCTION next(n NUMBER := 1) RETURN BOOLEAN IS
emp_id employees.employee_id%TYPE;

BEGIN
FOR count IN 1 .. n LOOP
FETCH c INTO emp_id;
EXIT WHEN c%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Id: ' ||(emp_id));

END LOOP;
RETURN c%FOUND;

END next;
PROCEDURE close IS BEGIN
IF c%ISOPEN THEN CLOSE c; END IF;

END close;
END curs_pkg;

Persistent State of a Package Cursor

Copyright © 2009, Oracle. All rights reserved.4 - 16

Executing CURS_PKG

SET SERVEROUTPUT ON
EXECUTE curs_pkg.open
DECLARE
more BOOLEAN := curs_pkg.next(3);

BEGIN
IF NOT more THEN
curs_pkg.close;

END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.4 - 17

Using PL/SQL Tables
of Records in Packages

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
PROCEDURE get_employees(emps OUT emp_table_type) IS

i BINARY_INTEGER := 0;
BEGIN

FOR emp_record IN (SELECT * FROM employees)
LOOP

emps(i) := emp_record;
i:= i+1;

END LOOP;
END get_employees;

END emp_pkg;
/

CREATE OR REPLACE PACKAGE emp_pkg IS
TYPE emp_table_type IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
PROCEDURE get_employees(emps OUT emp_table_type);

END emp_pkg;
/

Copyright © 2009, Oracle. All rights reserved.4 - 18

PL/SQL Wrapper

• The PL/SQL wrapper is a stand-alone utility that hides
application internals by converting PL/SQL source code
into portable object code.

• Wrapping has the following features:
– Platform independence
– Dynamic loading
– Dynamic binding
– Dependency checking
– Normal importing and exporting when invoked

Copyright © 2009, Oracle. All rights reserved.4 - 19

Running the Wrapper

The command-line syntax is:

• The INAME argument is required.
• The default extension for the input file is .sql, unless it is

specified with the name.
• The ONAME argument is optional.
• The default extension for output file is .plb, unless

specified with the ONAME argument.
Examples:

WRAP INAME=input_file_name [ONAME=output_file_name]

WRAP INAME=demo_04_hello.sql
WRAP INAME=demo_04_hello
WRAP INAME=demo_04_hello.sql ONAME=demo_04_hello.plb

Copyright © 2009, Oracle. All rights reserved.4 - 20

Results of Wrapping

• Original PL/SQL source code in the input file:

• Wrapped code in the output file:

CREATE PACKAGE banking IS
min_bal := 100;
no_funds EXCEPTION;

...
END banking;
/

CREATE PACKAGE banking
wrapped

012abc463e ...

/

Copyright © 2009, Oracle. All rights reserved.4 - 21

Guidelines for Wrapping

• You must wrap only the package body, not the package
specification.

• The wrapper can detect syntactic errors but cannot detect
semantic errors.

• The output file should not be edited. You maintain the
original source code and wrap again as required.

Copyright © 2009, Oracle. All rights reserved.4 - 22

Summary

In this lesson, you should have learned how to:
• Create and call overloaded subprograms
• Use forward declarations for subprograms
• Write package initialization blocks
• Maintain persistent package state
• Use the PL/SQL wrapper to wrap code

Copyright © 2009, Oracle. All rights reserved.4 - 23

Practice 4: Overview

This practice covers the following topics:
• Using overloaded subprograms
• Creating a package initialization block
• Using a forward declaration
• Using the WRAP utility to prevent the source code from

being deciphered by humans

