
A

Practice Solutions

Oracle Database 10g: Develop PL/SQL Program Units A – 2

Practice I: Solutions
1. Launch SQL Developer using the icon that is provided on your desktop.

a. Create a database connection by using the following information:
 Connection Name: ora61
 Username: ora61
 Password: ora61
 Hostname: localhost
 Port: 1521
 SID: orcl

Oracle Database 10g: Develop PL/SQL Program Units A – 3

Practice I: Solutions (continued)

b. Execute basic SELECT statements to query the data in the DEPARTMENTS,
EMPLOYEES, and JOBS tables. Take a few minutes to familiarize yourself with
the data, or consult Appendix B, which provides a description and some data from
each table in the Human Resources schema.

SELECT * FROM departments;
SELECT * FROM employees;

2. Create a procedure called HELLO to display the text Hello World.

a. Create a procedure called HELLO.

b. In the executable section, use the DBMS_OUTPUT.PUT_LINE procedure to print
Hello World, and save the code in the database.
Note: If you get compile-time errors, edit the PL/SQL to correct the code and replace the
CREATE keyword with the text CREATE OR REPLACE.

CREATE PROCEDURE hello IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World');
END;
/

c. Create an anonymous block to invoke the stored procedure. Include the SET
SERVEROUTPUT ON command to ensure that the output from the
DBMS_OUTPUT.PUT_LINE procedure is displayed..

SET SERVEROUTPUT ON
BEGIN
 hello;
END;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 4

Practice I: Solutions (continued)

3. Create a function called TOTAL_SALARY to compute the sum of all employee salaries.

a. Create a function called TOTAL_SALARY that returns a NUMBER.

b. In the executable section, execute a query to store the total salary of all employees in a
local variable that you declare in the declaration section. Return the value stored in the
local variable. Compile the code.

CREATE FUNCTION total_salary RETURN NUMBER IS
 total employees.salary%type;
BEGIN
 SELECT SUM(salary) INTO total
 FROM employees;
 RETURN total;
END;
/

c. Use an anonymous block to invoke the function. To display the result computed by the
function, use the DBMS_OUTPUT.PUT_LINE procedure.
Hint: Either nest the function call inside the DBMS_OUTPUT.PUT_LINE parameter, or
store the function result in a local variable of the anonymous block and use the local
variable in the DBMS_OUTPUT.PUT_LINE procedure.

DECLARE
 total number := total_salary;
BEGIN
 DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total);
END;
/
-- OR ...
BEGIN
 DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total_salary);
END;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 5

Practice I: Solutions (continued)

If you have time, complete the following exercise:

4. Launch SQL*Plus using the icon that is provided on your desktop.

a. Invoke the procedure and function that you created in exercises 2 and 3.

SET SERVEROUTPUT ON
EXECUTE hello;

EXECUTE DBMS_OUTPUT.PUT_LINE('Total Salary: '|| total_salary);

b. Create a new procedure called HELLO_AGAIN to print Hello World again.

CREATE PROCEDURE hello_again IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('Hello World again');
END;
/

c. Invoke the HELLO_AGAIN procedure with an anonymous block.

SET SERVEROUTPUT ON
BEGIN
 hello_again;
END;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 6

Practice 1: Solutions
Note: You can find table descriptions and sample data in Appendix B, “Table Descriptions and
Data.” Click the Save Script button to save your subprograms as .sql files in your local file
system.
Remember to enable SERVEROUTPUT if you have previously disabled it.

1. Create and invoke the ADD_JOB procedure and consider the results.

a. Create a procedure called ADD_JOB to insert a new job into the JOBS table. Provide the
ID and title of the job using two parameters.

CREATE OR REPLACE PROCEDURE add_job (
 jobid jobs.job_id%TYPE,
 jobtitle jobs.job_title%TYPE) IS
BEGIN
 INSERT INTO jobs (job_id, job_title)
 VALUES (jobid, jobtitle);
 COMMIT;
END add_job;
/

b. Compile the code, and invoke the procedure with IT_DBA as job ID and Database
Administrator as job title. Query the JOBS table to view the results.

EXECUTE add_job ('IT_DBA', 'Database Administrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

c. Invoke your procedure again, passing a job ID of ST_MAN and a job title of Stock
Manager. What happens and why?

EXECUTE add_job ('ST_MAN', 'Stock Manager')

Error report:
ORA-00001: unique constraint (ORA61.JOB_ID_PK) violated
ORA-06512: at "ORA61.ADD_JOB", line 5
ORA-06512: at line 1
00001. 00000 - "unique constraint (%s.%s) violated"

 An exception occurs because there is a primary key integrity constraint on the JOB_ID
column.

Oracle Database 10g: Develop PL/SQL Program Units A – 7

Practice 1: Solutions (continued)

2. Create a procedure called UPD_JOB to modify a job in the JOBS table.

a. Create a procedure called UPD_JOB to update the job title. Provide the job ID and a new
title using two parameters. Include the necessary exception handling if no update occurs.

CREATE OR REPLACE PROCEDURE upd_job(
 jobid IN jobs.job_id%TYPE,
 jobtitle IN jobs.job_title%TYPE) IS
BEGIN
 UPDATE jobs
 SET job_title = jobtitle
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202, 'No job updated.');
 END IF;
END upd_job;
/

b. Compile the code; invoke the procedure to change the job title of the job ID IT_DBA to
Data Administrator. Query the JOBS table to view the results.

EXECUTE upd_job ('IT_DBA', 'Data Administrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

 Also check the exception handling by trying to update a job that does not exist. (You can
use the job ID IT_WEB and the job title Web Master.)

EXECUTE upd_job ('IT_WEB', 'Web Master')

Error report:
ORA-20202: No job updated.
ORA-06512: at "ORA61.UPD_JOB", line 9
ORA-06512: at line 1

Oracle Database 10g: Develop PL/SQL Program Units A – 8

Practice 1: Solutions (continued)

3. Create a procedure called DEL_JOB to delete a job from the JOBS table.

a. Create a procedure called DEL_JOB to delete a job. Include the necessary exception
handling if no job is deleted.

CREATE OR REPLACE PROCEDURE del_job (jobid jobs.job_id%TYPE) IS
BEGIN
 DELETE FROM jobs
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20203, 'No jobs deleted.');
 END IF;
END DEL_JOB;
/

b. Compile the code; invoke the procedure using job ID IT_DBA. Query the JOBS table
to view the results.

EXECUTE del_job ('IT_DBA')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';

 Also, check the exception handling by trying to delete a job that does not exist. (Use the
IT_WEB job ID.) You should get the message that you used in the exception-handling
section of the procedure as output.

EXECUTE del_job ('IT_WEB')

Error report:
ORA-20203: No jobs deleted.
ORA-06512: at "ORA61.DEL_JOB", line 6
ORA-06512: at line 1

4. Create a procedure called GET_EMPLOYEE to query the EMPLOYEES table, retrieving the
salary and job ID for an employee when provided with the employee ID.

a. Create a procedure that returns a value from the SALARY and JOB_ID columns for a
specified employee ID. Compile the code and remove the syntax errors.

Oracle Database 10g: Develop PL/SQL Program Units A – 9

Practice 1: Solutions (continued)
CREATE OR REPLACE PROCEDURE get_employee
 (empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
END get_employee;
/

b. Execute the procedure using host variables for the two OUT parameters: one for the salary
and the other for the job ID. Display the salary and job ID for employee ID 120.

VARIABLE salary NUMBER
VARIABLE job VARCHAR2(15)
EXECUTE get_employee(120, :salary, :job)
PRINT salary job

c. Invoke the procedure again, passing an EMPLOYEE_ID of 300. What happens and why?

EXECUTE get_employee(300, :salary, :job)

Error report:
ORA-01403: no data found
ORA-06512: at "ORA61.GET_EMPLOYEE", line 6
ORA-06512: at line 1

There is no employee in the EMPLOYEES table with an EMPLOYEE_ID of 300. The
SELECT statement retrieved no data from the database, resulting in a fatal PL/SQL
error: NO_DATA_FOUND.

Oracle Database 10g: Develop PL/SQL Program Units A – 10

Practice 2: Solutions

1. Create and invoke the GET_JOB function to return a job title.

a. Create and compile a function called GET_JOB to return a job title.
CREATE OR REPLACE FUNCTION get_job (jobid IN jobs.job_id%type)
RETURN jobs.job_title%type IS
 title jobs.job_title%type;
BEGIN
 SELECT job_title
 INTO title
 FROM jobs
 WHERE job_id = jobid;
 RETURN title;
END get_job;
/

b. Create a VARCHAR2 host variable called TITLE, allowing a length of 35
characters. Invoke the function with the SA_REP job ID to return the value in the host
variable. Print the host variable to view the result.

VARIABLE title VARCHAR2(35)
EXECUTE :title := get_job ('SA_REP');
PRINT title

2. Create a function called GET_ANNUAL_COMP to return the annual salary computed from an
employee’s monthly salary and commission passed as parameters.

a. Develop and store the GET_ANNUAL_COMP function, accepting parameter values for
monthly salary and commission. Either or both values passed can be NULL, but the
function should still return a non-NULL annual salary. Use the following basic formula to
calculate the annual salary:
 (salary*12) + (commission_pct*salary*12)

CREATE OR REPLACE FUNCTION get_annual_comp(
 sal IN employees.salary%TYPE,
 comm IN employees.commission_pct%TYPE)
 RETURN NUMBER IS
BEGIN
 RETURN (NVL(sal,0) * 12 + (NVL(comm,0) * nvl(sal,0) * 12));
END get_annual_comp;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 11

Practice 2: Solutions (continued)

b. Use the function in a SELECT statement against the EMPLOYEES table for employees in
department 30.

SELECT employee_id, last_name,
 get_annual_comp(salary,commission_pct) "Annual Compensation"
FROM employees
WHERE department_id=30
/

3. Create a procedure, ADD_EMPLOYEE, to insert a new employee into the EMPLOYEES table.
The procedure should call a VALID_DEPTID function to check whether the department ID
specified for the new employee exists in the DEPARTMENTS table.

a. Create a function VALID_DEPTID to validate a specified department ID and return a
BOOLEAN value of TRUE if the department exists.

CREATE OR REPLACE FUNCTION valid_deptid(
 deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 12

Practice 2: Solutions (continued)

b. Create the ADD_EMPLOYEE procedure to add an employee to the EMPLOYEES table.
The row should be added to the EMPLOYEES table if the VALID_DEPTID function
returns TRUE; otherwise, alert the user with an appropriate message. Provide the
following parameters (with defaults specified in parentheses): first_name,
last_name, email, job (SA_REP), mgr (145), sal (1000), comm (0), and deptid
(30). Use the EMPLOYEES_SEQ sequence to set the employee_id column, and set
hire_date to TRUNC(SYSDATE).

CREATE OR REPLACE PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID. Try again.');
 END IF;
END add_employee;
/

c. Call ADD_EMPLOYEE for the name Jane Harris in department 15, leaving other
parameters with their default values. What is the result?

Note: If the database server time is not between 8:00 and 18:00, the Secure_employees
trigger will be fired on performing any DML operation on the EMPLOYEES table. Disable
the aforesaid trigger to overcome this problem.

EXECUTE add_employee('Jane', 'Harris', 'JAHARRIS', deptid=> 15)

Error report:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA61.ADD_EMPLOYEE", line 17
ORA-06512: at line 1

Oracle Database 10g: Develop PL/SQL Program Units A – 13

Practice 2: Solutions (continued)

d. Add another employee named Joe Harris in department 80, leaving the remaining
parameters with their default values. What is the result?

EXECUTE add_employee('Joe', 'Harris', 'JAHARRIS', deptid=> 80)

Oracle Database 10g: Develop PL/SQL Program Units A – 14

Practice 3: Solutions

1. Create a package specification and body called JOB_PKG, containing a copy of your
ADD_JOB, UPD_JOB, and DEL_JOB procedures, as well as your GET_JOB function.
Note: Use the code from your previously saved procedures and functions when creating the
package. You can copy the code in a procedure or function, and then paste the code into the
appropriate section of the package.

a. Create the package specification including the procedures and function headings as
public constructs.

CREATE OR REPLACE PACKAGE job_pkg IS
 PROCEDURE add_job (jobid jobs.job_id%TYPE, jobtitle
jobs.job_title%TYPE);
 PROCEDURE del_job (jobid jobs.job_id%TYPE);
 FUNCTION get_job (jobid IN jobs.job_id%type) RETURN
jobs.job_title%type;
 PROCEDURE upd_job(jobid IN jobs.job_id%TYPE, jobtitle IN
jobs.job_title%TYPE);
END job_pkg;
/

Note: Consider whether you still need the stand-alone procedures and functions you just
packaged.

b. Create the package body with the implementations for each of the subprograms.

CREATE OR REPLACE PACKAGE BODY job_pkg IS
 PROCEDURE add_job (
 jobid jobs.job_id%TYPE,
 jobtitle jobs.job_title%TYPE) IS
 BEGIN
 INSERT INTO jobs (job_id, job_title)
 VALUES (jobid, jobtitle);
 COMMIT;
 END add_job;

 PROCEDURE del_job (jobid jobs.job_id%TYPE) IS
 BEGIN
 DELETE FROM jobs
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20203, 'No jobs deleted.');
 END IF;
 END DEL_JOB;

Oracle Database 10g: Develop PL/SQL Program Units A – 15

Practice 3: Solutions (continued)

 FUNCTION get_job (jobid IN jobs.job_id%type)
 RETURN jobs.job_title%type IS
 title jobs.job_title%type;
 BEGIN
 SELECT job_title
 INTO title
 FROM jobs
 WHERE job_id = jobid;
 RETURN title;
 END get_job;

 PROCEDURE upd_job(
 jobid IN jobs.job_id%TYPE,
 jobtitle IN jobs.job_title%TYPE) IS
 BEGIN
 UPDATE jobs
 SET job_title = jobtitle
 WHERE job_id = jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202, 'No job updated.');
 END IF;
 END upd_job;

END job_pkg;
/

c. Invoke your ADD_JOB package procedure by passing the values IT_SYSAN and
Systems Analyst as parameters.

EXECUTE job_pkg.add_job('IT_SYSAN', 'Systems Analyst')

d. Query the JOBS table to see the result.

SELECT *
FROM jobs
WHERE job_id = 'IT_SYSAN';

Oracle Database 10g: Develop PL/SQL Program Units A – 16

Practice 3: Solutions (continued)

2. Create and invoke a package that contains private and public constructs.

a. Create a package specification and package body called EMP_PKG that contains your
ADD_EMPLOYEE and GET_EMPLOYEE procedures as public constructs, and include
your VALID_DEPTID function as a private construct.

Package specification:

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

Package body:

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;
 -- ...

Oracle Database 10g: Develop PL/SQL Program Units A – 17

Practice 3: Solutions (continued)

Package body (continued):

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 18

Practice 3: Solutions (continued)

b. Invoke the EMP_PKG.GET_EMPLOYEE procedure, using department ID 15 for
employee Jane Harris with email JAHARRIS. Because department ID 15 does not
exist, you should get an error message as specified in the exception handler of your
procedure.

EXECUTE emp_pkg.add_employee('Jane', 'Harris','JAHARRIS', deptid => 15)

Error report:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA61.EMP_PKG", line 31
ORA-06512: at line 1

c. Invoke the ADD_EMPLOYEE package procedure by using department ID 80 for
employee David Smith with email DASMITH.

EXECUTE emp_pkg.add_employee('David', 'Smith','DASMITH', deptid => 80)

Oracle Database 10g: Develop PL/SQL Program Units A – 19

Practice 4: Solutions

1. Copy and modify the code for the EMP_PKG package that you created in Practice 3,
Exercise 2, and overload the ADD_EMPLOYEE procedure.

a. In the package specification, add a new procedure called ADD_EMPLOYEE, which
accepts three parameters: the first name, last name, and department ID. Save and compile
the changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

Package created.

No errors.

b. Implement the new ADD_EMPLOYEE procedure in the package body so that it
formats the email address in uppercase characters, using the first letter of the first name
concatenated with the first seven letters of the last name. The procedure should call the
existing ADD_EMPLOYEE procedure to perform the actual INSERT operation using its
parameters and formatted email to supply the values. Save and compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;

Oracle Database 10g: Develop PL/SQL Program Units A – 20

Practice 4: Solutions (continued)
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 21

Practice 4: Solutions (continued)

c. Invoke the new ADD_EMPLOYEE procedure using the name Samuel Joplin to be
added to department 30.

EXECUTE emp_pkg.add_employee('Samuel', 'Joplin', 30)

2. In the EMP_PKG package, create two overloaded functions called GET_EMPLOYEE.

a. In the specification, add a GET_EMPLOYEE function that accepts the parameter called
emp_id based on the employees.employee_id%TYPE type, and a second
GET_EMPLOYEE function that accepts a parameter called family_name of the
employees.last_name%TYPE type. Both functions should return an
EMPLOYEES%ROWTYPE. Save and compile the changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 22

Practice 4: Solutions (continued)

b. In the package body, implement the first GET_EMPLOYEE function to query an
employee by his or her ID, and the second to use the equality operator on the value
supplied in the family_name parameter. Save and compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 23

Practice 4: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 24

Practice 4: Solutions (continued)

c. Add a utility procedure PRINT_EMPLOYEE to the package that accepts an
EMPLOYEES%ROWTYPE as a parameter and displays the department_id,
employee_id, first_name, last_name, job_id, and salary for an employee
on one line, using DBMS_OUTPUT. Save and compile the changes.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO dummy
 FROM departments
 WHERE department_id = deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

Oracle Database 10g: Develop PL/SQL Program Units A – 25

Practice 4: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 26

Practice 4: Solutions (continued)
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;
END emp_pkg;
/
SHOW ERRORS

d. Use an anonymous block to invoke the EMP_PKG.GET_EMPLOYEE function with an
employee ID of 100, and family name of 'Joplin'. Use the PRINT_EMPLOYEE
procedure to display the results for each row returned.

SET SERVEROUTPUT ON
BEGIN
 emp_pkg.print_employee(emp_pkg.get_employee(100));
 emp_pkg.print_employee(emp_pkg.get_employee('Joplin'));
END;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 27

Practice 4: Solutions (continued)

3. Because the company does not frequently change its departmental data, you improve
performance of your EMP_PKG by adding a public procedure INIT_DEPARTMENTS to
populate a private PL/SQL table of valid department IDs. Modify the VALID_DEPTID
function to use the private PL/SQL table contents to validate department ID values.

a. In the package specification, create a procedure called INIT_DEPARTMENTS with no
parameters.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

b. In the package body, implement the INIT_DEPARTMENTS procedure to store all
department IDs in a private PL/SQL index-by table named valid_departments
containing BOOLEAN values. Use the department_id column value as the index to
create the entry in the index-by table to indicate its presence, and assign the entry a value
of TRUE. Declare the valid_departments variable and its type definition
boolean_tabtype before all procedures in the body.

Oracle Database 10g: Develop PL/SQL Program Units A – 28

Practice 4: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 ...
 END valid_deptid;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 ...
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 ...
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 ...
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 ...
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 29

Practice 4: Solutions (continued)
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
END emp_pkg;
/
SHOW ERRORS

c. In the body, create an initialization block that calls the INIT_DEPARTMENTS procedure
to initialize the table. Save and compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 ...
 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 30

Practice 4: Solutions (continued)

4. Change the VALID_DEPTID validation processing to use the private PL/SQL table of
department IDs.

a. Modify VALID_DEPTID to perform its validation by using the PL/SQL table of
department ID values. Save and compile the changes.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;
 ...

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

b. Test your code by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

Error report:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA61.EMP_PKG", line 32
ORA-06512: at "ORA61.EMP_PKG", line 43
ORA-06512: at line 1

The INSERT operation to add the employee fails with an exception because department 15
does not exist.

Oracle Database 10g: Develop PL/SQL Program Units A – 31

Practice 4: Solutions (continued)

c. Insert a new department with ID 15 and name Security, and commit the changes.

INSERT INTO departments (department_id, department_name)
VALUES (15, 'Security');
COMMIT;

d. Test your code again by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

Error report:
ORA-20204: Invalid department ID. Try again.
ORA-06512: at "ORA61.EMP_PKG", line 32
ORA-06512: at "ORA61.EMP_PKG", line 43
ORA-06512: at line 1

The INSERT operation to add the employee fails with an exception because
department 15 does not exist as an entry in the PL/SQL index-by table package state
variable.

e. Execute the EMP_PKG.INIT_DEPARTMENTS procedure to update the internal PL/SQL
table with the latest departmental data.

EXECUTE EMP_PKG.INIT_DEPARTMENTS

f. Test your code by calling ADD_EMPLOYEE using the employee name James Bond,
who works in department 15. What happens?

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

The row is finally inserted because the department 15 record exists in the database
and package PL/SQL index-by table because EMP_PKG.INIT_DEPARTMENTS has
been invoked, which refreshes the package state data.

Oracle Database 10g: Develop PL/SQL Program Units A – 32

Practice 4: Solutions (continued)
g. Delete employee James Bond and department 15 from their respective tables,

commit the changes, and refresh the department data by invoking the
EMP_PKG.INIT_DEPARTMENTS procedure.

DELETE FROM employees
WHERE first_name = James AND last_name = Bond;
DELETE FROM departments WHERE department_id = 15;
COMMIT;
EXECUTE EMP_PKG.INIT_DEPARTMENTS

5. Reorganize the subprograms in the package specification body so that they are in
alphabetical sequence.

a. Edit the package specification and reorganize subprograms alphabetically. Compile the
package specification. What happens?

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

It compiles successfully.
Note: The package may already have its subprograms in alphabetical sequence.

Oracle Database 10g: Develop PL/SQL Program Units A – 33

Practice 4: Solutions (continued)

b. Edit the package body and reorganize all subprograms alphabetically. Compile the
package specification. What happens?

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID. Try
again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

Oracle Database 10g: Develop PL/SQL Program Units A – 34

Practice 4: Solutions (continued)
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

Oracle Database 10g: Develop PL/SQL Program Units A – 35

Practice 4: Solutions (continued)
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Warning: execution completed with warning
PACKAGE BODY emp_pkg Compiled.
16/8 PLS-00313: 'VALID_DEPTID' not declared in this scope

It does not compile successfully because the VALID_DEPTID function is referenced
before it is declared.

c. Fix the compilation error by using a forward declaration in the body for the offending
subprogram reference. Re-create the package body. What happens? Save the package
code in a script file.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;
 ...

Oracle Database 10g: Develop PL/SQL Program Units A – 36

Practice 4: Solutions (continued)

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

A forward declaration for the VALID_DEPTID function enables the package body
to be compiled successfully.

If you have time, complete the following exercise:

6. Wrap the EMP_PKG package body and re-create it.

a. Query the data dictionary to view the source for the EMP_PKG body.

SELECT text
FROM user_source
WHERE name = 'EMP_PKG'
AND type = 'PACKAGE BODY'
ORDER BY line;

…

Oracle Database 10g: Develop PL/SQL Program Units A – 37

Practice 4: Solutions (continued)

b. Start a terminal window and execute the WRAP command-line utility to wrap the body
of the EMP_PKG package. Give the output file name a .plb extension.
Hint: Copy the file (which you saved in step 5c) containing the package body to a file
called emp_pkg_b.sql.

 Open a terminal window and browse to the directory where the .sql file is saved. Then
enter the wrap command as shown in the following screenshot:

c. Using SQL Developer, open and compile the .plb file containing the wrapped source.

Oracle Database 10g: Develop PL/SQL Program Units A – 38

Practice 4: Solutions (continued)

d. Query the data dictionary to display the source for the EMP_PKG package body again.
Are the original source code lines readable?

SELECT text
FROM user_source
WHERE name = 'EMP_PKG'
AND type = 'PACKAGE BODY'
ORDER BY line;

The source code for the body is no longer readable. You can view the wrapped
source, but the orginal source code is not shown. For this reason, make sure you
always have a secure copy of your source code in files outside the database when
using the WRAP utility.

Oracle Database 10g: Develop PL/SQL Program Units A – 39

Practice 5: Solutions

1. Create a procedure called EMPLOYEE_REPORT that generates an employee report in a file
in the operating system, using the UTL_FILE package. The report should generate a list of
employees who have exceeded the average salary of their department.

a. Your program should accept two parameters. The first parameter is the output
directory. The second parameter is the name of the text file that is written.
Note: Use the directory location value UTL_FILE. Add an exception-handling section to
handle errors that may be encountered when using the UTL_FILE package.

CREATE OR REPLACE PROCEDURE employee_report(
 dir IN VARCHAR2, filename IN VARCHAR2) IS
 f UTL_FILE.FILE_TYPE;
 CURSOR avg_csr IS
 SELECT last_name, department_id, salary
 FROM employees outer
 WHERE salary > (SELECT AVG(salary)
 FROM employees inner
 GROUP BY outer.department_id)
 ORDER BY department_id;
BEGIN
 f := UTL_FILE.FOPEN(dir, filename,'w');
 UTL_FILE.PUT_LINE(f, 'Employees who earn more than average salary: ');
 UTL_FILE.PUT_LINE(f, 'REPORT GENERATED ON ' ||SYSDATE);
 UTL_FILE.NEW_LINE(f);
 FOR emp IN avg_csr
 LOOP
 UTL_FILE.PUT_LINE(f,
 RPAD(emp.last_name, 30) || ' ' ||
 LPAD(NVL(TO_CHAR(emp.department_id,'9999'),'-'), 5) || ' ' ||
 LPAD(TO_CHAR(emp.salary, '$99,999.00'), 12));
 END LOOP;
 UTL_FILE.NEW_LINE(f);
 UTL_FILE.PUT_LINE(f, '*** END OF REPORT ***');
 UTL_FILE.FCLOSE(f);
END employee_report;
/

Oracle Database 10g: Develop PL/SQL Program Units A – 40

Practice 5: Solutions (continued)

b. Invoke the program, using the second parameter with a name such as sal_rpt.txt.

The following is a sample output from the report file:

 Employees who earn more than average salary:
 REPORT GENERATED ON 26-FEB-04
 Hartstein 20 $13,000.00
 Raphaely 30 $11,000.00
 Marvis 40 $6,500.00
 ...
 *** END OF REPORT ***

EXECUTE employee_report('UTL_FILE','sal_rpt.txt')

PL/SQL Procedure sucessfully completed.

Note: The data displays the employee’s last name, department ID, and salary.
You can view the generated report from the following location:
 /home/oracle/labs/PLPU/PLPU_dirs/UTL_FILE

Employees who earn more than average salary:
REPORT GENERATED ON 16-FEB-04

Hartstein 20 $13,000.00
Raphaely 30 $11,000.00
Mavris 40 $6,500.00
Weiss 50 $8,000.00
Kaufling 50 $7,900.00
Fripp 50 $8,200.00
Vollman 50 $6,500.00
Hunold 60 $9,000.00
Baer 70 $10,000.00
Russell 80 $14,000.00
Bernstein 80 $9,500.00
Olsen 80 $8,000.00
 :
 :
Kochhar 90 $17,000.00
De Haan 90 $17,000.00
Greenberg 100 $12,000.00
Faviet 100 $9,000.00
Chen 100 $8,200.00
Sciarra 100 $7,700.00
Urman 100 $7,800.00
Popp 100 $6,900.00
Higgins 110 $12,000.00
Gietz 110 $8,300.00
Grant - $7,000.00

*** END OF REPORT ***

Oracle Database 10g: Develop PL/SQL Program Units A – 41

Practice 5: Solutions (continued)

2. Create a new procedure called WEB_EMPLOYEE_REPORT that generates the same data as
the EMPLOYEE_REPORT.

a. First, execute SET SERVEROUTPUT ON, and then execute htp.print('hello')
followed by executing OWA_UTIL.SHOWPAGE. The exception messages generated can
be ignored.

SET SERVEROUTPUT ON
EXECUTE HTP.PRINT('hello')
EXECUTE OWA_UTIL.SHOWPAGE

Error report:
ORA-06502: PL/SQL: numeric or value error
ORA-06512: at "SYS.OWA_UTIL", line 325
ORA-06512: at "SYS.HTP", line 1322
ORA-06512: at "SYS.HTP", line 1397
ORA-06512: at "SYS.HTP", line 1684
ORA-06512: at line 1
06502. 00000 - "PL/SQL: numeric or value error%s"
*Cause:
*Action:
anonymous block completed

These steps are performed to ensure that the messages are not generated again.
However, remember that the HTP package is intended to be used in the Oracle
HTTP Server context, not SQL Developer.

b. Write the WEB_EMPLOYEE_REPORT procedure using the HTP package to
generate an HTML report of employees with a salary greater than the average for their
departments. If you know HTML, create an HTML table; otherwise, create simple lines
of data.
Hint: Copy the cursor definition and the FOR loop from the EMPLOYEE_REPORT
procedure for the basic structure for your Web report.

CREATE OR REPLACE PROCEDURE web_employee_report IS
 CURSOR avg_csr IS
 SELECT last_name, department_id, salary
 FROM employees outer
 WHERE salary > (SELECT AVG(salary)
 FROM employees inner
 GROUP BY outer.department_id)
 ORDER BY department_id;

Oracle Database 10g: Develop PL/SQL Program Units A – 42

Practice 5: Solutions (continued)
BEGIN
 htp.htmlopen;
 htp.headopen;
 htp.title('Employee Salary Report');
 htp.headclose;
 htp.bodyopen;
 htp.header(1, 'Employees who earn more than average salary');
 htp.print('REPORT GENERATED ON' || to_char(SYSDATE, 'DD-MON-YY'));
 htp.br;
 htp.hr;
 htp.tableOpen;
 htp.tablerowOpen;
 htp.tableHeader('Last Name');
 htp.tableHeader('Department');
 htp.tableHeader('Salary');
 htp.tablerowclose;

 FOR emp IN avg_csr
 LOOP
 htp.tablerowOpen;
 htp.tabledata(emp.last_name);
 htp.tabledata(NVL(TO_CHAR(emp.department_id,'9999'),'-'));
 htp.tabledata(TO_CHAR(emp.salary, '$99,999.00'));
 htp.tablerowclose;
 END LOOP;

 htp.tableclose;
 htp.hr;
 htp.print('*** END OF REPORT ***');
 htp.bodyclose;
 htp.htmlclose;
END web_employee_report;
/
show errors

c. Execute the procedure to generate the HTML data into a server buffer,
and execute the OWA_UTIL.SHOWPAGE procedure to display contents of the buffer.
Remember that SERVEROUTPUT should be ON before you execute the code.

EXECUTE web_employee_report
EXECUTE owa_util.showpage

Oracle Database 10g: Develop PL/SQL Program Units A – 43

Practice 5: Solutions (continued)

…

Oracle Database 10g: Develop PL/SQL Program Units A – 44

Practice 5: Solutions (continued)
 d. Create an HTML file called web_employee_report.htm containing the output result

text that you select and copy from the opening <HTML> tag to the closing </HTML> tag.
Paste the copied text into the file and save it to disk. Alternatively, you can use the Save

icon () to save the output and then edit the text. Double-click the file to display the
results in your default browser.

 Note: You have to open the file with a text editor to remove any unwanted text at the top.

Oracle Database 10g: Develop PL/SQL Program Units A – 45

Practice 5: Solutions (continued)
3. Your boss wants to run the employee report frequently. You create a procedure that uses the

DBMS_SCHEDULER package to schedule the EMPLOYEE_REPORT procedure for execution.
You should use parameters to specify a frequency, and an optional argument to specify the
number of minutes after which the scheduled job should be terminated.

a. Create a procedure called SCHEDULE_REPORT that provides the following two
parameters:
- interval to specify a string indicating the frequency of the scheduled job
- minutes to specify the total life in minutes (default of 10) for the scheduled job, after
which it is terminated. The code will divide the duration by the quantity (24 60) when
it is added to the current date and time to specify the termination time.
When the procedure creates a job, with the name of EMPSAL_REPORT by calling
DBMS_SCHEDULER.CREATE_JOB, the job should be enabled and scheduled for the
PL/SQL block to start immediately. You must schedule an anonymous block to invoke
the EMPLOYEE_REPORT procedure so that the file name can be updated with a new
time, each time the report is executed. EMPLOYEE_REPORT is given the directory name
you used for task 1, and the file name parameter is specified in the following format:
sal_rpt_hh24-mi-ss.txt, where hh24-mi-ss represents the hours, minutes,
and seconds
Use the following local PL/SQL variable to construct a PL/SQL block:

 plsql_block VARCHAR2(200) :=
 'BEGIN'||
 ' EMPLOYEE_REPORT(''UTL_FILE'','||
 '''sal_rpt_''||to_char(sysdate,''HH24-MI-SS'')||''.txt'');'||
 'END;';

 This code is provided to help you because it is a nontrivial PL/SQL string to construct.

CREATE OR REPLACE PROCEDURE schedule_report(
 interval VARCHAR2, minutes NUMBER := 10) IS
 plsql_block VARCHAR2(200) :=
 'BEGIN'||
 ' EMPLOYEE_REPORT(''UTL_FILE'','||
 '''sal_rpt_''||to_char(sysdate,''HH24-MI-SS'')||''.txt''); '||
 'END;';
BEGIN
 DBMS_SCHEDULER.CREATE_JOB(
 job_name => 'EMPSAL_REPORT',
 job_type => 'PLSQL_BLOCK',
 job_action => plsql_block,
 start_date => SYSDATE,
 repeat_interval => interval,
 end_date => SYSDATE + minutes/(24*60),
 enabled => TRUE);
END;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 46

Practice 5: Solutions (continued)
b. Test the SCHEDULE_REPORT procedure by executing it with a parameter specifying a

frequency of every 2 minutes and a termination time 10 minutes after it starts.
Note: You must browse to the following location to check whether your files are created:

 /home/oracle/labs/PLPU/PLPU_dirs/UTL_FILE

EXECUTE schedule_report('FREQUENCY=MINUTELY;INTERVAL=2', 10)

c. During and after the process, you can query job_name and enabled columns from the
USER_SCHEDULER_JOBS table to check whether the job still exists.

SELECT job_name, enabled
FROM user_scheduler_jobs;

 Note: This query should return no rows after 10 minutes have elapsed.

Oracle Database 10g: Develop PL/SQL Program Units A – 47

Practice 6: Solutions

1. Create a package called TABLE_PKG that uses Native Dynamic SQL to create or drop a
table, and to populate, modify, and delete rows from the table.

a. Create a package specification with the following procedures:
 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2)
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL)
 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL)
 PROCEDURE del_row(table_name VARCHAR2,
 conditions VARCHAR2 := NULL)
 PROCEDURE remove(table_name VARCHAR2)
Ensure that subprograms manage optional default parameters with NULL values.

CREATE OR REPLACE PACKAGE table_pkg IS
 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2);
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL);
 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL);
 PROCEDURE del_row(table_name VARCHAR2, conditions VARCHAR2 := NULL);
 PROCEDURE remove(table_name VARCHAR2);
END table_pkg;
/
SHOW ERRORS

b. Create the package body that accepts the parameters and dynamically constructs the
appropriate SQL statements that are executed using Native Dynamic SQL, except for the
remove procedure that should be written using the DBMS_SQL package.

CREATE OR REPLACE PACKAGE BODY table_pkg IS
 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 PROCEDURE make(table_name VARCHAR2, col_specs VARCHAR2) IS
 stmt VARCHAR2(200) := 'CREATE TABLE '|| table_name ||
 ' (' || col_specs || ')';
 BEGIN
 execute(stmt);
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 48

Practice 6: Solutions (continued)
 PROCEDURE add_row(table_name VARCHAR2, col_values VARCHAR2,
 cols VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'INSERT INTO '|| table_name;
 BEGIN
 IF cols IS NOT NULL THEN
 stmt := stmt || ' (' || cols || ')';
 END IF;
 stmt := stmt || ' VALUES (' || col_values || ')';
 execute(stmt);
 END;

 PROCEDURE upd_row(table_name VARCHAR2, set_values VARCHAR2,
 conditions VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'UPDATE '|| table_name || ' SET ' ||
set_values;
 BEGIN
 IF conditions IS NOT NULL THEN
 stmt := stmt || ' WHERE ' || conditions;
 END IF;
 execute(stmt);
 END;

 PROCEDURE del_row(table_name VARCHAR2, conditions VARCHAR2 := NULL) IS
 stmt VARCHAR2(200) := 'DELETE FROM '|| table_name;
 BEGIN
 IF conditions IS NOT NULL THEN
 stmt := stmt || ' WHERE ' || conditions;
 END IF;
 execute(stmt);
 END;

 PROCEDURE remove(table_name VARCHAR2) IS
 csr_id INTEGER;
 stmt VARCHAR2(100) := 'DROP TABLE '||table_name;
 BEGIN
 csr_id := DBMS_SQL.OPEN_CURSOR;
 DBMS_OUTPUT.PUT_LINE(stmt);
 DBMS_SQL.PARSE(csr_id, stmt, DBMS_SQL.NATIVE);
 -- Parse executes DDL statements,no EXECUTE is required.
 DBMS_SQL.CLOSE_CURSOR(csr_id);
 END;

END table_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 49

Practice 6: Solutions (continued)

c. Execute the package MAKE procedure to create a table as follows:

 make('my_contacts', 'id number(4), name varchar2(40)');

EXECUTE table_pkg.make('my_contacts', 'id number(4), name varchar2(40)')

d. Describe the MY_CONTACTS table structure.

DESCRIBE my_contacts

e. Execute the ADD_ROW package procedure to add the following rows:

add_row('my_contacts','1,''Geoff Gallus''','id, name');
add_row('my_contacts','2,''Nancy''','id, name');
add_row('my_contacts','3,''Sunitha Patel''','id,name');
add_row('my_contacts','4,''Valli Pataballa''','id,name');

BEGIN
 table_pkg.add_row('my_contacts','1,''Geoff Gallus''','id, name');
 table_pkg.add_row('my_contacts','2,''Nancy''','id, name');
 table_pkg.add_row('my_contacts','3,''Sunitha Patel''','id,name');
 table_pkg.add_row('my_contacts','4,''Valli Pataballa''','id,name');
END;
/

f. Query the MY_CONTACTS table contents.

SELECT *
FROM my_contacts;

g. Execute the DEL_ROW package procedure to delete a contact with ID value 1.

EXECUTE table_pkg.del_row('my_contacts', 'id=1')

Oracle Database 10g: Develop PL/SQL Program Units A – 50

Practice 6: Solutions (continued)

h. Execute the UPD_ROW procedure with following row data:

upd_row('my_contacts','name=''Nancy Greenberg''','id=2');

EXEC table_pkg.upd_row('my_contacts','name=''Nancy Greenberg''','id=2')

i. Select the data from the MY_CONTACTS table again to view the changes.

SELECT *
FROM my_contacts;

j. Drop the table by using the remove procedure and describe the MY_CONTACTS table.

EXECUTE table_pkg.remove('my_contacts')
DESCRIBE my_contacts

ERROR:
--
ERROR: object MY_CONTACTS does not exist

2. Create a COMPILE_PKG package that compiles the PL/SQL code in your schema.

a. In the specification, create a package procedure called MAKE that accepts the name of a
PL/SQL program unit to be compiled.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 51

Practice 6: Solutions (continued)

b. In the body, the MAKE procedure should call a private function called GET_TYPE to
determine the PL/SQL object type from the data dictionary, and return the type name (use
PACKAGE for a package with a body) if the object exists; otherwise, it should return a
NULL. If the object exists, MAKE dynamically compiles it with the ALTER statement.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS
 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;
END compile_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 52

Practice 6: Solutions (continued)

c. Use the COMPILE_PKG.MAKE procedure to compile the EMPLOYEE_REPORT
procedure, the EMP_PKG package, and a nonexistent object called EMP_DATA.

EXECUTE compile_pkg.make('employee_report')
EXECUTE compile_pkg.make('emp_pkg')
EXECUTE compile_pkg.make('emp_data')

anonymous block completed
ALTER PROCEDURE employee_report COMPILE

anonymous block completed
ALTER PACKAGE emp_pkg COMPILE

Error starting at line 4 in command:
EXECUTE compile_pkg.make('emp_data')
Error report:
ORA-20001: Subprogram 'emp_data' does not exist
ORA-06512: at "ORA61.COMPILE_PKG", line 39
ORA-06512: at line 1

3. Add a procedure to the COMPILE_PKG that uses the DBMS_METADATA to obtain a DDL
statement that can regenerate a named PL/SQL subprogram, and writes the DDL to a file by
using the UTL_FILE package.

a. In the package specification, create a procedure called REGENERATE that accepts the
name of a PL/SQL component to be regenerated. Declare a public VARCHAR2 variable
called dir initialized with the directory alias value 'UTL_FILE'. Compile the
specification.

CREATE OR REPLACE PACKAGE compile_pkg IS
 dir VARCHAR2(100) := 'UTL_FILE';
 PROCEDURE make(name VARCHAR2);
 PROCEDURE regenerate(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

 Note: Initialize the correct path name in the dir variable value for your course.

Oracle Database 10g: Develop PL/SQL Program Units A – 53

Practice 6: Solutions (continued)

b. In the package body, implement the REGENERATE procedure so that it uses the
GET_TYPE function to determine the PL/SQL object type from the supplied name. If the
object exists, obtain the DDL used to create the component using the
DBMS_METADATA.GET_DDL procedure, which must be provided with the object name
in uppercase text.
Save the DDL statement in a file by using the UTL_FILE.PUT procedure. Write the file
in the directory path stored in the public variable called dir (from the specification).
Construct a file name (in lowercase characters) by concatenating the USER function, an
underscore, and the object name with a .sql extension—for example,
ora1_myobject.sql. Compile the body.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 54

Practice 6: Solutions (continued)
 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

 PROCEDURE regenerate (name VARCHAR2) IS
 file UTL_FILE.FILE_TYPE;
 filename VARCHAR2(100) := LOWER(USER ||'_'|| name ||'.sql');
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 file := UTL_FILE.FOPEN(dir, filename, 'w');
 UTL_FILE.PUT(file,
 DBMS_METADATA.GET_DDL(proc_type, UPPER(name)));
 UTL_FILE.FCLOSE(file);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Object with '''|| name ||''' does not exist');
 END IF;
 END regenerate;

END compile_pkg;
/
SHOW ERRORS

c. Execute the COMPILE_PKG.REGENERATE procedure by using the name of the
TABLE_PKG created in the first task of this practice.

EXECUTE compile_pkg.regenerate('TABLE_PKG')

Note: If required, you can execute the following statement to set the directory for the file:

EXECUTE compile_pkg.dir := '<utl_file_dir>';

Oracle Database 10g: Develop PL/SQL Program Units A – 55

Practice 6: Solutions (continued)

d. Open the generated file from the following location:

 /home/oracle/labs/PLPU/PLPU_dirs/UTL_FILE

Edit the file to place a / terminator character at the end of a CREATE statement (if
required). Cut and paste the results into the SQL Developer Worksheet and execute the
statement.

Oracle Database 10g: Develop PL/SQL Program Units A – 56

Practice 7: Solutions

1. Update EMP_PKG with a new procedure to query employees in a specified department.

a. In the specification, declare a get_employees procedure, with its parameter called
dept_id based on the employees.department_id column type. Define an
index-by PL/SQL type as a TABLE OF EMPLOYEES%ROWTYPE.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
END emp_pkg;
/
SHOW ERRORS

b. In the body of the package, define a private variable called emp_table based on the
type defined in the specification to hold employee records. Implement the
get_employees procedure to bulk fetch the data into the table.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

Oracle Database 10g: Develop PL/SQL Program Units A – 57

Practice 7: Solutions (continued)
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

Oracle Database 10g: Develop PL/SQL Program Units A – 58

Practice 7: Solutions (continued)
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 59

Practice 7: Solutions (continued)
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

c. Create a new procedure in the specification and body, called show_employees, which
does not take arguments and displays the contents of the private PL/SQL table variable (if
any data exists).
Hint: Use the print_employee procedure.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;

Oracle Database 10g: Develop PL/SQL Program Units A – 60

Practice 7: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE show_employees;
END emp_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 61

Practice 7: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 62

Practice 7: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 63

Practice 7: Solutions (continued)

d. Invoke the emp_pkg.get_employees procedure for department 30, and then invoke
emp_pkg.show_employees. Repeat this for department 60.

EXECUTE emp_pkg.get_employees(30)
EXECUTE emp_pkg.show_employees

EXECUTE emp_pkg.get_employees(60)
EXECUTE emp_pkg.show_employees

anonymous block completed
anonymous block completed
Employees in Package table
30 209 Samuel Joplin SA_REP 1000
30 114 Den Raphaely PU_MAN 11000
30 115 Alexander Khoo PU_CLERK 3100
30 116 Shelli Baida PU_CLERK 2900
30 117 Sigal Tobias PU_CLERK 2800
30 118 Guy Himuro PU_CLERK 2600
30 119 Karen Colmenares PU_CLERK 2500

anonymous block completed
anonymous block completed
Employees in Package table
60 103 Alexander Hunold IT_PROG 9000
60 104 Bruce Ernst IT_PROG 6000
60 105 David Austin IT_PROG 4800
60 106 Valli Pataballa IT_PROG 4800
60 107 Diana Lorentz IT_PROG 4200

2. Your manager wants to keep a log whenever the add_employee procedure in the package
is invoked to insert a new employee into the EMPLOYEES table.

a. First, load and execute the /home/oracle/labs/PLPU/labs/lab_07_02_a.sql
script to create a log table called LOG_NEWEMP and a sequence called
log_newemp_seq.

CREATE TABLE log_newemp (
 entry_id NUMBER(6) CONSTRAINT log_newemp_pk PRIMARY KEY,
 user_id VARCHAR2(30),
 log_time DATE,
 name VARCHAR2(60)
);

CREATE SEQUENCE log_newemp_seq;

Oracle Database 10g: Develop PL/SQL Program Units A – 64

Practice 7: Solutions (continued)

b. In the package body, modify the add_employee procedure, which performs the actual
INSERT operation to have a local procedure called audit_newemp. The
audit_newemp procedure must use an autonomous transaction to insert a log record
into the LOG_NEWEMP table. Store the USER, the current time, and the new employee
name in the log table row. Use log_newemp_seq to set the entry_id column.
Note: Remember to perform a COMMIT operation in a procedure with an autonomous
transaction.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;

 BEGIN
 IF valid_deptid(deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

Oracle Database 10g: Develop PL/SQL Program Units A – 65

Practice 7: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

 ...

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

c. Modify the add_employee procedure to invoke audit_emp before it performs the
INSERT operation.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;

Oracle Database 10g: Develop PL/SQL Program Units A – 66

Practice 7: Solutions (continued)
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;
 BEGIN
 IF valid_deptid(deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;
 ...
 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 67

Practice 7: Solutions (continued)

d. Invoke the add_employee procedure for these new employees: Max Smart in
department 20 and Clark Kent in department 10. What happens?

EXECUTE emp_pkg.add_employee('Max', 'Smart', 20)
EXECUTE emp_pkg.add_employee('Clark', 'Kent', 10)

Both INSERT operations complete successfully, and the log table has two log
records, as shown in the next step.

e. Query the two EMPLOYEES records added, and the records in the LOG_NEWEMP table.
How many log records are present?

SELECT department_id, first_name, last_name
FROM employees
WHERE last_name IN ('Smart','Kent');

SELECT *
FROM log_newemp;

 There are two log records: one for Smart and the other for Kent.

f. Execute a ROLLBACK statement to undo the INSERT operations that have not been
committed. Use the same queries from Exercise 2e: the first to check whether the
employee rows for Smart and Kent have been removed, and the second to check the
log records in the LOG_NEWEMP table. How many log records are present? Why?

ROLLBACK;

Rollback complete.

Oracle Database 10g: Develop PL/SQL Program Units A – 68

Practice 7: Solutions (continued)
SELECT department_id, first_name, last_name
FROM employees
WHERE last_name IN ('Smart','Kent');

no rows selected

SELECT *
FROM log_newemp;

The two employee records are removed (rolled back). The two log records remain in
the log table because they were inserted using an autonomous transaction, which is
unaffected by the rollback performed in the main transaction.

If you have time, complete the following exercise:

Before you can complete the following exercise, you need to create a new connection using
the following information:

 Connection Name: ora62
 Username: ora62
 Password: ora62
 Hostname: localhost
 Port: 1521
 SID: orcl

Oracle Database 10g: Develop PL/SQL Program Units A – 69

3. Modify the EMP_PKG package to use AUTHID of CURRENT_USER and test the behavior
with any other student.
Note: Verify that the LOG_NEWEMP table exists from Exercise 2 in this practice.

a. Grant the EXECUTE privilege on your EMP_PKG package to ora62.

GRANT EXECUTE ON EMP_PKG TO ORA62;

b. As ora62, invoke ora61’s add_employee procedure to insert the employee Jaco
Pastorius in department 10. Remember to prefix the package name with the owner of
the package. The call should operate with definer’s rights.

EXECUTE ora1.emp_pkg.add_employee('Jaco', 'Pastorius', 10)

c. Now, execute a query of the employees in department 10 with both ora61 and ora62.
In which user’s employee table did the new record get inserted?

As ORA61:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

As ORA62:
SELECT department_id, first_name, last_name
FROM departments
WHERE department_id = 10;

The new employee is added to the table in the ORA61 schema—that is, in the table of the
owner of the EMP_PKG package.

Oracle Database 10g: Develop PL/SQL Program Units A – 70

Practice 7: Solutions (continued)

d. Now, modify ora61’s package EMP_PKG specification to use an AUTHID
CURRENT_USER. Compile the body of EMP_PKG.

CREATE OR REPLACE PACKAGE emp_pkg AUTHID CURRENT_USER IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE show_employees;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 71

Practice 7: Solutions (continued)
e. As ora62, execute the add_employee procedure again to add employee Joe

Zawinal in department 10.

Note: Run the lab_07_02_a.sql script in ora62 so that the log_newemp table is
created before executing emp_pkg.add_employee.

EXECUTE ora1.emp_pkg.add_employee('Joe', 'Zawinal', 10)

f. Query your employees in department 10. In which table was the new employee added?

As ORA61:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

As ORA62:
SELECT department_id, first_name, last_name
FROM employees
WHERE department_id = 10;

The new employee is added to the user ORA62 employee table. That is, the new
employee is added to the table that is owned by the caller (invoker’s rights) of the
package procedure.

Oracle Database 10g: Develop PL/SQL Program Units A – 72

Practice 7: Solutions (continued)

g. Write a query to display the records added in the LOG_NEWEMP tables. Ask the other
student to query his or her own copy of the table.

User ORA1 executes:
SELECT *
FROM log_newemp;

User ORA2 executes:
SELECT *
FROM log_newemp;

The log records created by the audit_emp procedure (which executes the
autonomous transaction) are stored in the log table of the owner of the package
when the package procedure is executed with the definer’s (owner) rights. The log
records are stored in the caller’s log table when the package procedure is executed
with invoker’s (caller) rights.

Oracle Database 10g: Develop PL/SQL Program Units A – 73

Practice 8: Solutions

1. Answer the following questions.

a. Can a table or a synonym be invalidated?

A table or a synonym can never be invalidated; however, dependent objects can be
invalidated.

b. Consider the following dependency example:

The stand-alone procedure MY_PROC depends on the MY_PROC_PACK
package procedure. The MY_PROC_PACK procedure’s definition is
changed by recompiling the package body. The MY_PROC_PACK
procedure’s declaration is not altered in the package
specification.

 In this scenario, is the stand-alone procedure MY_PROC invalidated?

No, it is not invalidated because the stand-alone procedure MY_PROC depends on
the MY_PROC_PACK package procedure, which has not been altered. Although the
package body is recompiled, the package specification is not invalidated and does
not need to be recompliled.

2. Create a tree structure showing all dependencies involving your add_employee procedure
and your valid_deptid function.
Note: add_employee and valid_deptid were created in the lesson titled “Creating
Stored Functions.” You can run the solution scripts for Practice 2 if you need to create the
procedure and function.

a. Load and execute the utldtree.sql script, which is located in the
/home/oracle/labs/PLPU/labs folder.

 When you execute the script, the following results are displayed (you can ignore the error
messages):

drop sequence deptree_seq
 *

ERROR at line 1:
ORA-02289: sequence does not exist
Sequence created.

drop table deptree_temptab
 *

ERROR at line 1:
ORA-00942: table or view does not exist
Table created.

Procedure created.

Oracle Database 10g: Develop PL/SQL Program Units A – 74

Practice 8: Solutions (continued)

drop view deptree
*

ERROR at line 1:
ORA-00942: table or view does not exist

REM This view will succeed if current user is sys. This view shows
REM which shared cursors depend on the given object. If the current
REM user is not sys, then this view get an error either about lack
REM of privileges or about the non-existence of table x$kglxs.

set echo off

 from deptree_temptab d, dba_objects o
 *

ERROR at line 5:
ORA-00942: table or view does not exist

REM This view will succeed if current user is not sys. This view
REM does *not* show which shared cursors depend on the given object.
REM If the current user is sys then this view will get an error
REM indicating that the view already exists (since prior view create
REM will have succeeded).

set echo off
View created.

drop view ideptree
*

ERROR at line 1:
ORA-00942: table or view does not exist
View created.

b. Execute the deptree_fill procedure for the add_employee procedure.

EXECUTE deptree_fill('PROCEDURE', USER, 'add_employee')

c. Query the IDEPTREE view to see your results.

SELECT * FROM IDEPTREE;

Oracle Database 10g: Develop PL/SQL Program Units A – 75

Practice 8: Solutions (continued)

d. Execute the deptree_fill procedure for the valid_deptid function.

EXECUTE deptree_fill('FUNCTION', USER, 'valid_deptid')

e. Query the IDEPTREE view to see your results.

SELECT * FROM IDEPTREE;

If you have time, complete the following exercise:

3. Dynamically validate invalid objects.

a. Make a copy of your EMPLOYEES table, called EMPS.

CREATE TABLE emps AS
 SELECT * FROM employees;

Table created.

b. Alter your EMPLOYEES table and add the TOTSAL column with the
NUMBER(9,2)data type.

ALTER TABLE employees
 ADD (totsal NUMBER(9,2));

Table altered.

c. Create and save a query (lab8_soln_3c.sql) to display the name, type, and status of
all invalid objects.

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

Oracle Database 10g: Develop PL/SQL Program Units A – 76

d. In compile_pkg (created in Practice 6 in the lesson titled “Dynamic SQL and
Metadata”), add a procedure called recompile that recompiles all invalid procedures,
functions, and packages in your schema. Use Native Dynamic SQL to ALTER the invalid
object type and COMPILE it.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(name VARCHAR2);
 PROCEDURE recompile;
END compile_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;
 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */

Oracle Database 10g: Develop PL/SQL Program Units A – 77

Practice 8: Solutions (continued)

 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

 PROCEDURE recompile IS
 stmt VARCHAR2(200);
 obj_name user_objects.object_name%type;
 obj_type user_objects.object_type%type;
 BEGIN
 FOR objrec IN (SELECT object_name, object_type
 FROM user_objects
 WHERE status = 'INVALID'
 AND object_type <> 'PACKAGE BODY')
 LOOP
 stmt := 'ALTER '|| objrec.object_type ||' '||
 objrec.object_name ||' COMPILE';
 execute(stmt);
 END LOOP;
 END recompile;
END compile_pkg;
/

SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 78

Practice 8: Solutions (continued)
e. Execute the compile_pkg.recompile procedure.

EXECUTE compile_pkg.recompile

f. Run the script file that you created in step 3c (lab8_soln_3c.sql) to check the
status column value. Do you still have objects with an INVALID status?

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

no rows selected

 No rows are returned. There are no objects with an INVALID status.

Oracle Database 10g: Develop PL/SQL Program Units A – 79

Practice 9: Solutions

1. Create a table called PERSONNEL by executing the /home/oracle/labs/PLPU/labs/
lab_09_01.sql script. The table contains the following attributes and data types:

Column Name Data Type Length

ID NUMBER 6

last_name VARCHAR2 35

review CLOB N/A

picture BLOB N/A

CREATE TABLE personnel (
 id NUMBER(6) constraint personnel_id_pk PRIMARY KEY,
 last_name VARCHAR2(35),
 review CLOB,
 picture BLOB);

2. Insert two rows into the PERSONNEL table, one each for employee 2034 (whose last name
is Allen) and for employee 2035 (whose last name is Bond). Use the empty function for
the CLOB and provide NULL as the value for the BLOB.

INSERT INTO personnel
VALUES (2034, 'Allen', empty_clob(), NULL);

INSERT INTO personnel
VALUES (2035, 'Bond', empty_clob(), NULL);

Oracle Database 10g: Develop PL/SQL Program Units A – 80

Practice 9: Solutions (continued)

3. Examine and execute the /home/oracle/labs/PLPU/labs/lab_09_03.sql script. The
script creates a table named REVIEW_TABLE. This table contains annual review information
for each employee. The script also contains two statements to insert review details for two
employees.

CREATE TABLE review_table (
 employee_id number,
 ann_review VARCHAR2(2000));

INSERT INTO review_table
VALUES (2034,
 'Very good performance this year. '||
 'Recommended to increase salary by $500');
INSERT INTO review_table
VALUES (2035,
 'Excellent performance this year. '||
 'Recommended to increase salary by $1000');

COMMIT;

4. Update the PERSONNEL table.

a. Populate the CLOB for the first row by using the following subquery in an UPDATE
statement:

SELECT ann_review
FROM review_table
WHERE employee_id = 2034;

UPDATE personnel
 SET review = (SELECT ann_review
 FROM review_table
 WHERE employee_id = 2034)
 WHERE last_name = 'Allen';

Oracle Database 10g: Develop PL/SQL Program Units A – 81

Practice 9: Solutions (continued)

b. Populate the CLOB for the second row, using PL/SQL and the DBMS_LOB package.
Use the following SELECT statement to provide a value for the LOB locator.

SELECT ann_review
FROM review_table
WHERE employee_id = 2035;

DECLARE
 lobloc CLOB;
 text VARCHAR2(2000);
 amount NUMBER ;
 offset INTEGER;
BEGIN
 SELECT ann_review INTO text
 FROM review_table
 WHERE employee_id = 2035;
 SELECT review INTO lobloc
 FROM personnel
 WHERE last_name = 'Bond' FOR UPDATE;
 offset := 1;
 amount := length(text);
 DBMS_LOB.WRITE (lobloc, amount, offset, text);
 COMMIT;
END;
/

If you have time, complete the following exercise:

5. Create a procedure that adds a locator to a binary file into the PICTURE column of the
COUNTRIES table. The binary file is a picture of the country flag. The image files are named
after the country IDs. You need to load an image file locator into all rows in the Europe
region (REGION_ID = 1) in the COUNTRIES table. A DIRECTORY object called
COUNTRY_PIC referencing the location of the binary files has to be created for you.

a. Add the image column to the COUNTRIES table using:
ALTER TABLE countries ADD (picture BFILE);

ALTER TABLE countries ADD (picture BFILE);

 Alternatively, use the /home/oracle/labs/PLPU/labs/ Lab_09_05_a.sql file.

Oracle Database 10g: Develop PL/SQL Program Units A – 82

Practice 9: Solutions (continued)

b. Create a PL/SQL procedure called load_country_image that uses the
DBMS_LOB.FILEEXISTS to test whether the country picture file exists. If the file
exists, set the BFILE locator for the file in the PICTURE column; otherwise, display a
message that the file does not exist. Use the DBMS_OUTPUT package to report file size
information for each image associated with the PICTURE column.

CREATE OR REPLACE PROCEDURE load_country_image (dir IN VARCHAR2) IS
 file BFILE;
 filename VARCHAR2(40);
 rec_number NUMBER;
 file_exists BOOLEAN;
 CURSOR country_csr IS
 SELECT country_id
 FROM countries
 WHERE region_id = 1
 FOR UPDATE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('LOADING LOCATORS TO IMAGES...');
 FOR rec IN country_csr
 LOOP
 filename := rec.country_id || '.gif';
 file := BFILENAME(dir, filename);
 file_exists := (DBMS_LOB.FILEEXISTS(file) = 1);
 IF file_exists THEN
 DBMS_LOB.FILEOPEN(file);
 UPDATE countries
 SET picture = file
 WHERE CURRENT OF country_csr;
 DBMS_OUTPUT.PUT_LINE('Set Locator to file: '|| filename ||
 ' Size: ' || DBMS_LOB.GETLENGTH(file));
 DBMS_LOB.FILECLOSE(file);
 rec_number := country_csr%ROWCOUNT;
 ELSE
 DBMS_OUTPUT.PUT_LINE('File ' || filename ||' does not exist');
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('TOTAL FILES UPDATED: ' || rec_number);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_LOB.FILECLOSE(file);
 DBMS_OUTPUT.PUT_LINE('Error: '|| to_char(SQLCODE) || SQLERRM);
END load_country_image;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 83

Practice 9: Solutions (continued)

c. Invoke the procedure by passing the name of the directory object COUNTRY_PIC as a
string literal parameter value.

SET SERVEROUTPUT ON
EXECUTE load_country_image('COUNTRY_PIC')

Oracle Database 10g: Develop PL/SQL Program Units A – 84

Practice 10: Solutions

1. The rows in the JOBS table store a minimum salary and a maximum salary allowed for
different JOB_ID values. You are asked to write code to ensure that employees’ salaries fall
within the range allowed for their job type, for INSERT and UPDATE operations.

a. Write a procedure called CHECK_SALARY that accepts two parameters: one for an
employee’s job ID string and the other for the salary. The procedure uses the job ID to
determine the minimum and maximum salary for the specified job. If the salary
parameter does not fall within the salary range of the job, inclusive of the minimum and
maximum, then it should raise an application exception, with the message Invalid
salary <sal>. Salaries for job <jobid> must be between
<min> and <max>. Replace the various items in the message with values supplied by
parameters and variables populated by queries. Save the file.

CREATE OR REPLACE PROCEDURE check_salary (the_job VARCHAR2, the_salary
NUMBER) IS
 minsal jobs.min_salary%type;
 maxsal jobs.max_salary%type;
BEGIN
 SELECT min_salary, max_salary INTO minsal, maxsal
 FROM jobs
 WHERE job_id = UPPER(the_job);
 IF the_salary NOT BETWEEN minsal AND maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $'||the_salary||'. '||
 'Salaries for job '|| the_job ||
 ' must be between $'|| minsal ||' and $' || maxsal);
 END IF;
END;
/
SHOW ERRORS

b. Create a trigger called CHECK_SALARY_TRG on the EMPLOYEES table that fires before
an INSERT or UPDATE operation on each row. The trigger must call the
CHECK_SALARY procedure to carry out the business logic. The trigger should pass the
new job ID and salary to the procedure parameters.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees
FOR EACH ROW
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 85

Practice 10: Solutions (continued)

2. Test the CHECK_SAL_TRG using the following cases:

a. Using your EMP_PKG.ADD_EMPLOYEE procedure, add employee Eleanor Beh in
department 30. What happens and why?

EXECUTE emp_pkg.add_employee('Eleanor', 'Beh', 30)

Error report:
ORA-20100: Invalid salary $1000. Salaries for job SA_REP must be between
$6000 and $12000
ORA-06512: at "ORA61.CHECK_SALARY", line 9
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'
ORA-06512: at "ORA61.EMP_PKG", line 33
ORA-06512: at "ORA61.EMP_PKG", line 50
ORA-06512: at line 1

The trigger raises an exception because the EMP_PKG.ADD_EMPLOYEE procedure
invokes an overloaded version of itself that uses the default salary of $1,000 and the
default job ID of SA_REP. However, the JOBS table stores a minimum salary of
$6,000 for the SA_REP job type.

b. Update the salary of employee 115 to $2,000. In a separate UPDATE operation,
change the employee job ID to HR_REP. What happens in each case?

UPDATE employees
 SET salary = 2000
WHERE employee_id = 115;

Error report:
SQL Error: ORA-20100: Invalid salary $2000. Salaries for job PU_CLERK
must be between $2500 and $5500
ORA-06512: at "ORA61.CHECK_SALARY", line 9
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'

Oracle Database 10g: Develop PL/SQL Program Units A – 86

Practice 10: Solutions (continued)
UPDATE employees
 SET job_id = 'HR_REP'
WHERE employee_id = 115;

Error report:
SQL Error: ORA-20100: Invalid salary $3100. Salaries for job HR_REP must
be between $4000 and $9000
ORA-06512: at "ORA61.CHECK_SALARY", line 9
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'

The first UPDATE statement fails to set the salary to $2,000. The check salary trigger
rule fails the UPDATE operation because the new salary for employee 115 is less than
the minimum allowed for the PU_CLERK job.

The second UPDATE fails to change the employee’s job because the current
employee’s salary of $3,100 is less than the minimum for the new HR_REP job.

c. Update the salary of employee 115 to $2,800. What happens?

UPDATE employees
 SET salary = 2800
WHERE employee_id = 115;

1 row updated.

The UPDATE operation is successful because the new salary falls within the
acceptable range for the current job ID.

3. Update the CHECK_SALARY_TRG trigger to fire only when the job ID or salary values have
actually changed.

a. Implement the business rule using a WHEN clause to check whether the JOB_ID or
SALARY values have changed.
Note: Make sure that the condition handles the NULL in the OLD.column_name
values if an INSERT operation is performed; otherwise, an INSERT operation will fail.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees FOR EACH ROW
WHEN (new.job_id <> NVL(old.job_id,'?') OR
 new.salary <> NVL(old.salary,0))
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 87

Practice 10: Solutions (continued)

b. Test the trigger by executing the EMP_PKG.ADD_EMPLOYEE procedure with the
following parameter values: first_name='Eleanor', last name='Beh',
email='EBEH', job='IT_PROG', sal=5000.

BEGIN
 emp_pkg.add_employee('Eleanor', 'Beh', 'EBEH',
 job => 'IT_PROG', sal => 5000);
END;
/

c. Update employees with the IT_PROG job by incrementing their salary by $2,000. What
happens?

UPDATE employees
 SET salary = salary + 2000
WHERE job_id = 'IT_PROG';

Error report:
SQL Error: ORA-20100: Invalid salary $11000. Salaries for job IT_PROG
must be between $4000 and $10000
ORA-06512: at "ORA61.CHECK_SALARY", line 9
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'

 An employee’s salary in the specified job type exceeds the maximum salary for that
job type. No employee salaries in the IT_PROG job type are updated.

Oracle Database 10g: Develop PL/SQL Program Units A – 88

Practice 10: Solutions (continued)

d. Update the salary to $9,000 for Eleanor Beh.
Hint: Use an UPDATE statement with a subquery in the WHERE clause. What happens?

UPDATE employees
 SET salary = 9000
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

1 row updated

 The UPDATE operation is successful because the salary is valid for the employee’s
job type.

e. Change the job of Eleanor Beh to ST_MAN using another UPDATE statement with a
subquery. What happens?

UPDATE employees
 set job_id = 'ST_MAN'
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

Error report:
SQL Error: ORA-20100: Invalid salary $9000. Salaries for job ST_MAN must
be between $5500 and $8500
ORA-06512: at "ORA61.CHECK_SALARY", line 9
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'

The maximum salary of the new job type is less than the employee’s current salary.
Therefore, the UPDATE operation fails.

Oracle Database 10g: Develop PL/SQL Program Units A – 89

Practice 10: Solutions (continued)

4. You are asked to prevent employees from being deleted during business hours.

a. Write a statement trigger called DELETE_EMP_TRG on the EMPLOYEES table to
prevent rows from being deleted during weekday business hours, which are from
9:00 AM to 6:00 PM.

CREATE OR REPLACE TRIGGER delete_emp_trg
BEFORE DELETE ON employees
DECLARE
 the_day VARCHAR2(3) := TO_CHAR(SYSDATE, 'DY');
 the_hour PLS_INTEGER := TO_NUMBER(TO_CHAR(SYSDATE, 'HH24'));
BEGIN
 IF (the_hour BETWEEN 9 AND 18) AND (the_day NOT IN ('SAT','SUN')) THEN
 RAISE_APPLICATION_ERROR(-20150,
 'Employee records cannot be deleted during the week 9am and 6pm');
 END IF;
END;
/
SHOW ERRORS

b. Attempt to delete employees with JOB_ID of SA_REP who are not assigned to a
department.
Note: This is employee Grant with ID 178.

DELETE FROM employees
 WHERE job_id = 'SA_REP'
 AND department_id IS NULL;

Error report:
SQL Error: ORA-20150: Employee records cannot be deleted during the week
9am and 6pm
ORA-06512: at "ORA61.DELETE_EMP_TRG", line 6
ORA-04088: error during execution of trigger 'ORA61.DELETE_EMP_TRG'

Oracle Database 10g: Develop PL/SQL Program Units A – 90

Practice 11: Solutions

1. Employees receive an automatic increase in salary if the minimum salary for a job is
increased to a value larger than their current salary. Implement this requirement through a
package procedure called by a trigger on the JOBS table. When you attempt to update the
minimum salary in the JOBS table and try to update the employee’s salary, the
CHECK_SALARY trigger attempts to read the JOBS table, which is subject to change, and
you get a mutating table exception that is resolved by creating a new package and additional
triggers.

a. Update your EMP_PKG package (from Practice 7) by adding a procedure called
SET_SALARY that updates the employees’ salaries. The procedure accepts two
parameters: the job ID for those salaries that may have to be updated and the new
minimum salary for the job ID. The procedure sets all the employee salaries to the
minimum for their job if their current salary is less than the new minimum value.

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30);
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE);
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE);
 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype;
 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype;
 PROCEDURE get_employees(dept_id employees.department_id%type);
 PROCEDURE init_departments;
 PROCEDURE print_employee(emprec employees%rowtype);
 PROCEDURE set_salary(jobid VARCHAR2, min_salary NUMBER);
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 91

Practice 11: Solutions (continued)
CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tabtype IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tabtype;
 emp_table emp_tabtype;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN;
 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 email employees.email%TYPE,
 job employees.job_id%TYPE DEFAULT 'SA_REP',
 mgr employees.manager_id%TYPE DEFAULT 145,
 sal employees.salary%TYPE DEFAULT 1000,
 comm employees.commission_pct%TYPE DEFAULT 0,
 deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time, name)
 VALUES (log_newemp_seq.NEXTVAL, user_id, sysdate,
 first_name||' '||last_name);
 COMMIT;
 END audit_newemp;

 BEGIN
 IF valid_deptid(deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name, last_name, email,
 job_id,manager_id,hire_date,salary,commission_pct,department_id)
 VALUES (employees_seq.NEXTVAL, first_name, last_name, email,
 job, mgr, TRUNC(SYSDATE), sal, comm, deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204,
 'Invalid department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 first_name employees.first_name%TYPE,
 last_name employees.last_name%TYPE,
 deptid employees.department_id%TYPE) IS
 email employees.email%type;
 BEGIN
 email := UPPER(SUBSTR(first_name, 1, 1)||SUBSTR(last_name, 1, 7));
 add_employee(first_name, last_name, email, deptid => deptid);
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 92

Practice 11: Solutions (continued)
 PROCEDURE get_employee(
 empid IN employees.employee_id%TYPE,
 sal OUT employees.salary%TYPE,
 job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO sal, job
 FROM employees
 WHERE employee_id = empid;
 END get_employee;

 FUNCTION get_employee(emp_id employees.employee_id%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE employee_id = emp_id;
 RETURN emprec;
 END;

 FUNCTION get_employee(family_name employees.last_name%type)
 return employees%rowtype IS
 emprec employees%rowtype;
 BEGIN
 SELECT * INTO emprec
 FROM employees
 WHERE last_name = family_name;
 RETURN emprec;
 END;

 PROCEDURE get_employees(dept_id employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

Oracle Database 10g: Develop PL/SQL Program Units A – 93

Practice 11: Solutions (continued)
 PROCEDURE print_employee(emprec employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emprec.department_id ||' '||
 emprec.employee_id||' '||
 emprec.first_name||' '||
 emprec.last_name||' '||
 emprec.job_id||' '||
 emprec.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
 END valid_deptid;

 PROCEDURE set_salary(jobid VARCHAR2, min_salary NUMBER) IS
 CURSOR empcsr IS
 SELECT employee_id
 FROM employees
 WHERE job_id = jobid AND salary < min_salary;
 BEGIN
 FOR emprec IN empcsr
 LOOP
 UPDATE employees
 SET salary = min_salary
 WHERE employee_id = emprec.employee_id;
 END LOOP;
 END set_salary;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 94

Practice 11: Solutions (continued)

b. Create a row trigger named UPD_MINSALARY_TRG on the JOBS table that invokes the
EMP_PKG.SET_SALARY procedure, when the minimum salary in the JOBS table is
updated for a specified job ID.

CREATE OR REPLACE TRIGGER upd_minsalary_trg
AFTER UPDATE OF min_salary ON JOBS
FOR EACH ROW
BEGIN
 emp_pkg.set_salary(:new.job_id, :new.min_salary);
END;
/
SHOW ERRORS

c. Write a query to display the employee ID, last name, job ID, current salary, and
minimum salary for employees who are programmers—that is, their JOB_ID is
'IT_PROG'. Then update the minimum salary in the JOBS table to increase it by
$1,000. What happens?

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

Error report:
SQL Error: ORA-04091: table ORA61.JOBS is mutating, trigger/function may
not see it
ORA-06512: at "ORA61.CHECK_SALARY", line 5
ORA-06512: at "ORA61.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.CHECK_SALARY_TRG'
ORA-06512: at "ORA61.EMP_PKG", line 138
ORA-06512: at "ORA61.UPD_MINSALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA61.UPD_MINSALARY_TRG'
04091. 00000 - "table %s.%s is mutating, trigger/function may not see
it"

Oracle Database 10g: Develop PL/SQL Program Units A – 95

Practice 11: Solutions (continued)
The update of the MIN_SALARY column for job 'IT_PROG'fails because the
UPD_MINSALARY_TRG trigger on the JOBS table attempts to update the employees’
salaries by calling the EMP_PKG.SET_SALARY procedure. The SET_SALARY
procedure causes the CHECK_SALARY_TRG trigger to fire (a cascading effect).
CHECK_SALARY_TRG calls the CHECK_SALARY procedure, which attempts to read the
JOBS table data, thus encountering the mutating table exception on the JOBS table,
which is the table that is subject to the original UPDATE operation.

2. To resolve the mutating table issue, you create JOBS_PKG to maintain in memory a copy of
the rows in the JOBS table. Then the CHECK_SALARY procedure is modified to use the
package data rather than issue a query on a table that is mutating to avoid the exception.
However, a BEFORE INSERT OR UPDATE statement trigger must be created on the
EMPLOYEES table to initialize the JOBS_PKG package state before the CHECK_SALARY
row trigger is fired.

a. Create a new package called JOBS_PKG with the following specification.

PROCEDURE initialize;
FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;
PROCEDURE set_minsalary(jobid VARCHAR2,min_salary NUMBER);
PROCEDURE set_maxsalary(jobid VARCHAR2,max_salary NUMBER);

CREATE OR REPLACE PACKAGE jobs_pkg IS
 PROCEDURE initialize;
 FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
 FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;
 PROCEDURE set_minsalary(jobid VARCHAR2, min_salary NUMBER);
 PROCEDURE set_maxsalary(jobid VARCHAR2, max_salary NUMBER);
END jobs_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 96

Practice 11: Solutions (continued)

b. Implement the body of the JOBS_PKG where:
You declare a private PL/SQL index-by table called jobs_tabtype that is indexed by
a string type based on JOBS.JOB_ID%TYPE.
You declare a private variable called jobstab based on jobs_tabtype.

The INITIALIZE procedure reads the rows in the JOBS table by using a cursor loop,
and uses the JOB_ID value for the jobstab index that is assigned its corresponding
row.
The GET_MINSALARY function uses a jobid parameter as an index to the jobstab
and returns the min_salary for that element.
The GET_MAXSALARY function uses a jobid parameter as an index to the jobstab
and returns the max_salary for that element.
The SET_MINSALARY procedure uses its jobid as an index to the jobstab to set the
min_salary field of its element to the value in the min_salary parameter.
The SET_MAXSALARY procedure uses its jobid as an index to the jobstab to set the
max_salary field of its element to the value in the max_salary parameter.

CREATE OR REPLACE PACKAGE BODY jobs_pkg IS
 TYPE jobs_tabtype IS TABLE OF jobs%rowtype
 INDEX BY jobs.job_id%type;
 jobstab jobs_tabtype;

 PROCEDURE initialize IS
 BEGIN
 FOR jobrec IN (SELECT * FROM jobs)
 LOOP
 jobstab(jobrec.job_id) := jobrec;
 END LOOP;
 END initialize;

 FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(jobid).min_salary;
 END get_minsalary;

 FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(jobid).max_salary;
 END get_maxsalary;

 PROCEDURE set_minsalary(jobid VARCHAR2, min_salary NUMBER) IS
 BEGIN
 jobstab(jobid).max_salary := min_salary;
 END set_minsalary;

Oracle Database 10g: Develop PL/SQL Program Units A – 97

Practice 11: Solutions (continued)
 PROCEDURE set_maxsalary(jobid VARCHAR2, max_salary NUMBER) IS
 BEGIN
 jobstab(jobid).max_salary := max_salary;
 END set_maxsalary;

END jobs_pkg;
/

c. Copy the CHECK_SALARY procedure from Practice 10, Exercise 1a, and modify the
code by replacing the query on the JOBS table with statements to set the local minsal
and maxsal variables with values from the JOBS_PKG data by calling the appropriate
GET_*SALARY functions. This step should eliminate the mutating trigger exception.

CREATE OR REPLACE PROCEDURE check_salary (the_job VARCHAR2, the_salary
NUMBER) IS
 minsal jobs.min_salary%type;
 maxsal jobs.max_salary%type;
BEGIN
 /*
 ** Commented out to avoid mutating trigger exception on the JOBS table
 SELECT min_salary, max_salary INTO minsal, maxsal
 FROM jobs
 WHERE job_id = UPPER(the_job);
 */
 minsal := jobs_pkg.get_minsalary(UPPER(the_job));
 maxsal := jobs_pkg.get_maxsalary(UPPER(the_job));
 IF the_salary NOT BETWEEN minsal AND maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $'||the_salary||'. '||
 'Salaries for job '|| the_job ||
 ' must be between $'|| minsal ||' and $' || maxsal);
 END IF;
END;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 98

Practice 11: Solutions (continued)

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT_JOBPKG_TRG that uses the CALL syntax to invoke the
JOBS_PKG.INITIALIZE procedure to ensure that the package state is current before
the DML operations are performed.

CREATE OR REPLACE TRIGGER init_jobpkg_trg
BEFORE INSERT OR UPDATE ON jobs
CALL jobs_pkg.initialize
/
SHOW ERRORS

e. Test the code changes by executing the query to display the employees who are
programmers, and then issue an update statement to increase the minimum salary of the
IT_PROG job type by 1000 in the JOBS table, followed by a query on the employees
with the IT_PROG job type to check the resulting changes. Which employees’ salaries
have been set to the minimum for their job?

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

1 row updated.

Oracle Database 10g: Develop PL/SQL Program Units A – 99

Practice 11: Solutions (continued)
The employees with last names Austin, Pataballa, and Lorentz have all had their
salaries updated. No exception ocurred during this process, and you implemented a
solution for the mutating table trigger exception.

3. Because the CHECK_SALARY procedure is fired by CHECK_SALARY_TRG before inserting
or updating an employee, you must check whether this still works as expected.

a. Test this by adding a new employee using EMP_PKG.ADD_EMPLOYEE with the
following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, sal => 6500). What
happens?

EXECUTE emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', sal => 6500)

ERROR at line 1:
ORA-01403: no data found
ORA-01403: no data found
ORA-06512: at "ORA1.JOBS_PKG", line 16
ORA-06512: at "ORA1.CHECK_SALARY", line 11
ORA-06512: at "ORA1.CHECK_SALARY_TRG", line 2
ORA-04088: error during execution of trigger 'ORA1.CHECK_SALARY_TRG'
ORA-06512: at "ORA1.EMP_PKG", line 33
ORA-06512: at line 1

The problem here is that the CHECK_SALARY procedure attempts to read the value
of package state variables that have not yet been initialized. This is because it had
been modified to read the miniumum and maximum salaries from JOBS_PK, which
should store the data in a PL/SQL table. When CHECK_SALARY attempts to call
JOBS_PKG.GET_MINSALARY and JOBS_PKG.GET_MAXSALARY, they return
NO_DATA_FOUND exceptions that cause the trigger and the INSERT operation to
fail. This can be resolved with a BEFORE statement trigger that calls
JOBS_PKG.INITIALIZE to ensure that the JOBS_PKG state is set before you read
it. This is done in the next exercise (3b).

Oracle Database 10g: Develop PL/SQL Program Units A – 100

Practice 11: Solutions (continued)

b. To correct the problem encountered when adding or updating an employee, create a
BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE_INITJOBS_TRG on the EMPLOYEES table that calls the
JOBS_PKG.INITIALIZE procedure. Use the CALL syntax in the trigger body.

CREATE TRIGGER employee_initjobs_trg
BEFORE INSERT OR UPDATE OF job_id, salary ON employees
CALL jobs_pkg.initialize
/

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted record in
the employees table by displaying the employee ID, first and last names, salary, job
ID, and department ID.

EXECUTE emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', sal => 6500)

SELECT employee_id, first_name, last_name, salary, job_id, department_id
FROM employees
WHERE last_name = 'Morse';

Oracle Database 10g: Develop PL/SQL Program Units A – 101

Practice 12: Solutions

1. Alter the PLSQL_COMPILER_FLAGS parameter to enable native compilation for your
session, and compile any subprogram that you have written.

a. Execute the ALTER SESSION command to enable native compilation.

ALTER SESSION SET PLSQL_COMPILER_FLAGS = 'NATIVE';

b. Compile the EMPLOYEE_REPORT procedure. What occurs during compilation?

ALTER PROCEDURE employee_report COMPILE;

A shared library is generated in a directory specified by the database parameter,
plsql_native_library_dir. The library name is prefixed with the object
name and user compiling it, as in the following:
EMPLOYEE_REPORT__ORA1__P__50344.so.

c. Execute the EMPLOYEE_REPORT with the value 'UTL_FILE' as the first parameter,
and 'native_salrep.txt'.

EXECUTE employee_report('UTL_FILE', 'native_salrep.txt')

d. Switch compilation to use interpreted compilation.

ALTER SESSION SET PLSQL_COMPILER_FLAGS = 'INTERPRETED';

2. In COMPILE_PKG (from Practice 6), add an overloaded version of the procedure called
MAKE, which will compile a named procedure, function, or package.

a. In the specification, declare a MAKE procedure that accepts two string arguments, one for
the name of the PL/SQL construct and the other for the type of PL/SQL program, such as
PROCEDURE, FUNCTION, PACKAGE, or PACKAGE BODY.

CREATE OR REPLACE PACKAGE compile_pkg IS
 dir VARCHAR2(100) := 'UTL_FILE';
 PROCEDURE make(name VARCHAR2);
 PROCEDURE make(name VARCHAR2, objtype VARCHAR2);
 PROCEDURE regenerate(name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 102

Practice 12: Solutions (continued)

b. In the body, write the MAKE procedure to call the DBMS_WARNINGS package to suppress
the PERFORMANCE category. However, save the current compiler warning settings
before you alter them. Then write an EXECUTE IMMEDIATE statement to compile the
PL/SQL object using an appropriate ALTER...COMPILE statement with the supplied
parameter values. Finally, restore the compiler warning settings that were in place for the
calling environment before the procedure is invoked.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';
 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

Oracle Database 10g: Develop PL/SQL Program Units A – 103

Practice 12: Solutions (continued)
 PROCEDURE make(name VARCHAR2, objtype VARCHAR2) IS
 stmt VARCHAR2(100);
 warn_value varchar2(200);
 BEGIN
 stmt := 'ALTER '|| objtype ||' '|| name ||' COMPILE';
 warn_value := dbms_warning.get_warning_setting_string;
 dbms_warning.add_warning_setting_cat(
 'PERFORMANCE', 'DISABLE', 'SESSION');
 execute(stmt);
 dbms_warning.set_warning_setting_string(
 warn_value, 'SESSION');
 END make;

 PROCEDURE regenerate (name VARCHAR2) IS
 file UTL_FILE.FILE_TYPE;
 filename VARCHAR2(100) := LOWER(USER ||'_'|| name ||'.sql');
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 file := UTL_FILE.FOPEN(dir, filename, 'w');
 UTL_FILE.PUT(file,
 DBMS_METADATA.GET_DDL(proc_type, UPPER(name)));
 UTL_FILE.FCLOSE(file);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Object with '''|| name ||''' does not exist');
 END IF;

 END regenerate;

END compile_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units A – 104

Practice 12: Solutions (continued)

3. Write a new PL/SQL package called TEST_PKG containing a procedure called
GET_EMPLOYEES that uses an IN OUT argument.

a. In the specification, declare the GET_EMPLOYEES procedure with two parameters: one
input parameter specifying a department ID, and an IN OUT parameter specifying a
PL/SQL table of employee rows.
Hint: You have to declare a TYPE in the package specification for the PL/SQL table
parameter’s data type.

CREATE OR REPLACE PACKAGE test_pkg IS
 TYPE emp_tabtype IS TABLE OF employees%ROWTYPE;
 PROCEDURE get_employees(dept_id NUMBER, emps IN OUT emp_tabtype);
END test_pkg;
/
SHOW ERRORS

b. In the package body, implement the GET_EMPLOYEES procedure to retrieve all the
employee rows for a specified department into the IN OUT parameter of the PL/SQL
table.
Hint: Use the SELECT … BULK COLLECT INTO syntax to simplify the code.

CREATE OR REPLACE PACKAGE BODY test_pkg IS
 PROCEDURE get_employees(dept_id NUMBER, emps IN OUT emp_tabtype) IS
 BEGIN
 SELECT * BULK COLLECT INTO emps
 FROM employees
 WHERE department_id = dept_id;
 END get_employees;
END test_pkg;
/
SHOW ERRORS

4. Use the ALTER SESSION statement to set the PLSQL_WARNINGS so that all compiler
warning categories are enabled.

ALTER SESSION SET PLSQL_WARNINGS = 'ENABLE:ALL';

Oracle Database 10g: Develop PL/SQL Program Units A – 105

Practice 12: Solutions (continued)

5. Recompile the TEST_PKG created in an earlier task. What compiler warnings are displayed,
if any?

ALTER PACKAGE test_pkg COMPILE;
SHOW ERRORS

SP2-0809: Package altered with compilation warnings
Errors for PACKAGE TEST_PKG:

6. Write a PL/SQL anonymous block to compile the TEST_PKG package by using the
overloaded COMPILE_PKG.MAKE procedure with two parameters. The anonymous block
should display the current session warning string value before and after it invokes the
COMPILE_PKG.MAKE procedure. Do you see any warning messages? Confirm your
observations by executing the SHOW ERRORS PACKAGE command for the TEST_PKG.

BEGIN
 dbms_output.put_line('Warning level before compilation: '||
 dbms_warning.get_warning_setting_string);
 compile_pkg.make('TEST_PKG', 'PACKAGE');
 dbms_output.put_line('Warning level after compilation: '||
 dbms_warning.get_warning_setting_string);
END;
/
SHOW ERRORS PACKAGE test_pkg;

 Note: The current warning level setting should be the same before and after the call to
the COMPILE_PKG.MAKE procedure, which alters the settings to suppress warnings
and restores the original setting before returning to the caller.

