Creating Stored Functions

ORACLE

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Describe the uses of functions

 Create stored functions

* Invoke a function

 Remove a function

« Differentiate between a procedure and a function

ORACLE

2-2 Copyright © 2009, Oracle. All rights reserved.

Overview of Stored Functions

A function:
 Is anamed PL/SQL block that returns a value

« Can be stored in the database as a schema object for
repeated execution

* |s called as part of an expression or used to provide a
parameter value

ORACLE

2-3 Copyright © 2009, Oracle. All rights reserved.

Syntax for Creating Functions

The PL/SQL block must have at least one RETURN statement.

CREATE [OR REPLACE] FUNCTION function name
[(parameterl [model] datatypel, ...)]
RETURN datatype IS |AS
[local variable declarations; ..]
BEGIN
- actions; — PL/SQL block
RETURN expression;
END [function name];

ORACLE

2-4 Copyright © 2009, Oracle. All rights reserved.

Developing Functions

N

b

Create or
edit function

Y

=
w
L]
e —
T LY ‘

AhRARY W RN

" e k.

i
-
r

‘
.4ﬁ

Compiler
warnings or

errqrs?
i

-
WVRNYN
L T Y
-<
M
wm

AAAMRRA NN

‘:%_
U
(e

=

-
-
- WEELEEE

-
-

Invoke function

Copyright © 2009, Oracle. All rights reserved.

—

View compiler

warnings or
errors

- Elcampiler - Log]

------ @ Error(6 3) PLISGL: SGL Statement ignored

< 0] Project: Cagldeveloper! 13=gldeveloperisgldeyvelo
> £} FUNCTION ORAS1 GET_JOB@ora51

------ @ Errors,10): PLISGL: ORA-00304: "JOB_TIT

View errors or warnings
in SQL Developer

L3 SQL Plus

Use SHOW ERRORS
command in SQL*Plus

Use USER/ALL/DBA _
ERRORS Views

ORACLE

Stored Function: Example

e Create the function:

CREATE OR REPLACE FUNCTION get sal
(id employees.employee id%TYPE) RETURN NUMBER IS
sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO sal
FROM employees
WHERE employee id = id;

RETURN sal;

END get sal;

/

* |Invoke the function as an expression or a parameter value:

EXECUTE dbms output.put line(get sal(100))

ORACLE

2-6 Copyright © 2009, Oracle. All rights reserved.

Ways to Execute Functions

* |Invoke as part of a PL/SQL expression, using a:
— Host variable to obtain the result:

VARIABLE salary NUMBER
EXECUTE :salary := get sal(100)

— Local variable to obtain the result:

DECLARE sal employees.salary%type;
BEGIN

sal := get sal(100);
END ;

« Use as a parameter to another subprogram:
EXECUTE dbms output.put line(get sal(100))

 Use in a SQL statement (subject to restrictions):
SELECT job id, get sal (employee id) FROM employees;

ORACLE

2-7 Copyright © 2009, Oracle. All rights reserved.

Advantages of User-Defined Functions
In SQL Statements

« Can extend SQL where activities are too complex, too
awkward, or unavailable with SQL

 Can increase efficiency when used in the WHERE clause to
filter data, as opposed to filtering the data in the application

 Can manipulate data values

ORACLE

2-8 Copyright © 2009, Oracle. All rights reserved.

Function in SQL Expressions: Example

CREATE OR REPLACE FUNCTION tax(wvalue IN NUMBER)
RETURN NUMBER IS
BEGIN
RETURN (value * 0.08);
END tax;
/
SELECT employee id, last name, salary, tax(salary)
FROM employees
WHERE department id = 100;

EMPLOVEE_ID |[§ LasT_MaME|[E] salary |f Tax@Ealarn
1 105 Greenberg 12000 950
2 109 Faviet 9000 720
3 110 Chen 2200 ASE
4 111 Sciarra 7700 G1E
5 112 Urman 7E00 Az 4
& 113 Popp 900 P

ORACLE

2-9 Copyright © 2009, Oracle. All rights reserved.

Locations to Call User-Defined Functions

User-defined functions act like built-in single-row functions and
can be used in:

e The SELECT list or clause of a query
« Conditional expressions of the WHERE and HAVING
clauses

e The CONNECT BY, START WITH, ORDER BY, and GROUP
BY clauses of a query

e The VALUES clause of the INSERT statement
e The SET clause of the UPDATE statement

ORACLE

2-10 Copyright © 2009, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

« User-defined functions that are callable from SQL
expressions must:

— Be stored in the database
— Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types
— Return valid SQL data types, not PL/SQL-specific types
 When calling functions in SQL statements:

— Parameters must be specified with positional notation
— You must own the function or have the EXECUTE privilege

ORACLE

2-11 Copyright © 2009, Oracle. All rights reserved.

Controlling Side Effects When Calling Functions
from SQL Expressions

Functions called from:
e A SELECT statement cannot contain DML statements

e An UPDATE or DELETE statement on a table T cannot
guery or contain DML on the same table T

 SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

ORACLE

2-12 Copyright © 2009, Oracle. All rights reserved.

Restrictions on Calling Functions from SQL.:
Example

CREATE OR REPLACE FUNCTION dml call sql (sal NUMBER)
RETURN NUMBER IS
BEGIN
INSERT INTO employees (employee id, last name,
email, hire date, job id, salary)
VALUES (1, 'Frost', 'jfrost@company.com',
SYSDATE, 'SA MAN', sal);
RETURN (sal + 100);
END ;

UPDATE employees
SET salary = dml call sql (2000)
WHERE employee id = 170;

Error report:

SOL Error: 0ORA-04091: table ORAG1.EMPLOYEES: is mutating, trigderSfunction may not see it
OFEA-06512: at "0RAA1.DML_CALL_SQL", Tine 4

4091, 00000 - "table ¥s.¥s is mutating, triggerfunction may not see it"

ORACLE

2-13 Copyright © 2009, Oracle. All rights reserved.

Removing Functions

Removing a stored function:

 You can drop a stored function by using the following
syntax:

DROP FUNCTION function name

Example:
DROP FUNCTION get sal;

e All the privileges that are granted on a function are
revoked when the function is dropped.
e The CREATE OR REPLACE syntax Is equivalent to dropping

a function and re-creating it. Privileges granted on the
function remain the same when this syntax is used.

ORACLE

2-14 Copyright © 2009, Oracle. All rights reserved.

Viewing Functions in the Data Dictionary

Information for PL/SQL functions is stored in the following
Oracle data dictionary views:

* You can view source code in the USER SOURCE table for
subprograms that you own, or the ALL SOURCE table for
functions owned by others who have granted you the
EXECUTE privilege.

SELECT text

FROM user source
WHERE type = 'FUNCTION'
ORDER BY line;

 You can view the names of functions by using
USER OBJECTS.

SELECT object name
FROM user objects
WHERE object type = 'FUNCTION';

ORACLE

2-15 Copyright © 2009, Oracle. All rights reserved.

ORACLE

2 - Copyright © 2009, Oracle. All rights reserved.

Procedures Versus Functions

Procedures Functions

Execute as a PL/SQL statement

Invoke as part of an expression

Do not contain the RETURN
clause in the header

Must contain a RETURN
clause in the header

Can return values (if any) in
output parameters

Must return a single value

Can contain a RETURN
statement without a value

Must contain at least one
RETURN statement

16

Summary

In this lesson, you should have learned how to:

 Write a PL/SQL function to compute and return a value by
using the CREATE FUNCTION SQL Statement

* Invoke a function as part of a PL/SQL expression
 Use stored PL/SQL functions in SQL statements

 Remove a function from the database by using the DROP
FUNCTION SQL statement

ORACLE

2-17 Copyright © 2009, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:

* Creating stored functions:

— To guery a database table and return specific values
— To be used in a SQL statement

— To insert a new row, with specified parameter values, into a
database table

— Using default parameter values
e Invoking a stored function from a SQL statement
« Invoking a stored function from a stored procedure

ORACLE

2-18 Copyright © 2009, Oracle. All rights reserved.

