
Additional
Practice:

Solutions

Oracle Database 10g: Develop PL/SQL Program Units APS – 2

Part A: Additional Practice 1 Solutions

1. In this exercise, create a program to add a new job into the JOBS table.

a. Create a stored procedure called NEW_JOB to enter a new job into the JOBS table.
The procedure should accept three parameters. The first and second parameters supply a
job ID and a job title. The third parameter supplies the minimum salary. Use the
maximum salary for the new job as twice the minimum salary supplied for the job ID.

CREATE OR REPLACE PROCEDURE new_job(
 jobid IN jobs.job_id%TYPE,
 title IN jobs.job_title%TYPE,
 minsal IN jobs.min_salary%TYPE) IS
 maxsal jobs.max_salary%TYPE := 2 * minsal;
BEGIN
 INSERT INTO jobs(job_id, job_title, min_salary, max_salary)
 VALUES (jobid, title, minsal, maxsal);
 DBMS_OUTPUT.PUT_LINE ('New row added to JOBS table:');
 DBMS_OUTPUT.PUT_LINE (jobid || ' ' || title ||' '||
 minsal || ' ' || maxsal);
END new_job;
/
SHOW ERRORS

b. Invoke the procedure to add a new job with job ID 'SY_ANAL', job title
'System Analyst', and minimum salary 6,000.

SET SERVEROUTPUT ON
EXECUTE new_job ('SY_ANAL', 'System Analyst', 6000)

c. Check whether a row was added and note the new job ID for use in the next exercise.
Commit the changes.

SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

COMMIT;

Oracle Database 10g: Develop PL/SQL Program Units APS – 3

Part A: Additional Practice 2 Solutions

2. In this exercise, create a program to add a new row to the JOB_HISTORY table for an
existing employee.

a. Create a stored procedure called ADD_JOB_HIST to add a new row into the
JOB_HISTORY table for an employee who is changing his job to the new job ID
('SY_ANAL') that you created in exercise 1b.

The procedure should provide two parameters: one for the employee ID who is changing
the job and the second for the new job ID. Read the employee ID from the EMPLOYEES
table and insert it into the JOB_HISTORY table. Make the hire date of this employee as
the start date and today’s date as the end date for this row in the JOB_HISTORY table.

Change the hire date of this employee in the EMPLOYEES table to today’s date. Update
the job ID of this employee to the job ID passed as parameter (use the 'SY_ANAL' job
ID) and salary equal to the minimum salary for that job ID plus 500.

Note: Include exception handling to handle an attempt to insert a nonexistent employee.

CREATE OR REPLACE PROCEDURE add_job_hist(
 emp_id IN employees.employee_id%TYPE,
 new_jobid IN jobs.job_id%TYPE) IS
BEGIN
 INSERT INTO job_history
 SELECT employee_id, hire_date, SYSDATE, job_id, department_id
 FROM employees
 WHERE employee_id = emp_id;
 UPDATE employees
 SET hire_date = SYSDATE,
 job_id = new_jobid,
 salary = (SELECT min_salary + 500
 FROM jobs
 WHERE job_id = new_jobid)
 WHERE employee_id = emp_id;
 DBMS_OUTPUT.PUT_LINE ('Added employee ' || emp_id ||
 ' details to the JOB_HISTORY table');
 DBMS_OUTPUT.PUT_LINE ('Updated current job of employee ' ||
 emp_id|| ' to '|| new_jobid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');
END add_job_hist;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units APS – 4

Part A: Additional Practice 2 Solutions (continued)

b. Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before
invoking the ADD_JOB_HIST procedure.

ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;
ALTER TABLE job_history DISABLE ALL TRIGGERS;

c. Execute the procedure with employee ID 106 and job ID 'SY_ANAL' as parameters.

EXECUTE add_job_hist(106, 'SY_ANAL')

d. Query the JOB_HISTORY and EMPLOYEES tables to view your changes for employee
106, and then commit the changes.

SELECT * FROM job_history
WHERE employee_id = 106;

SELECT job_id, salary FROM employees
WHERE employee_id = 106;

COMMIT;

e. Reenable the triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables.

ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;
ALTER TABLE job_history ENABLE ALL TRIGGERS;

Oracle Database 10g: Develop PL/SQL Program Units APS – 5

Part A: Additional Practice 3 Solutions

3. In this exercise, create a program to update the minimum and maximum salaries for a job in
the JOBS table.

a. Create a stored procedure called UPD_JOBSAL to update the minimum and maximum
salaries for a specific job ID in the JOBS table. The procedure should provide three
parameters: the job ID, a new minimum salary, and a new maximum salary. Add
exception handling to account for an invalid job ID in the JOBS table. Raise an exception
if the maximum salary supplied is less than the minimum salary. Provide a message that
will be displayed if the row in the JOBS table is locked.
Hint: The resource locked/busy error number is –54.

CREATE OR REPLACE PROCEDURE upd_jobsal(
 jobid IN jobs.job_id%type,
 new_minsal IN jobs.min_salary%type,
 new_maxsal IN jobs.max_salary%type) IS
 dummy PLS_INTEGER;
 e_resource_busy EXCEPTION;
 sal_error EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_resource_busy , -54);
BEGIN
 IF (new_maxsal < new_minsal) THEN
 RAISE sal_error;
 END IF;
 SELECT 1 INTO dummy
 FROM jobs
 WHERE job_id = jobid
 FOR UPDATE OF min_salary NOWAIT;
 UPDATE jobs
 SET min_salary = new_minsal,
 max_salary = new_maxsal
 WHERE job_id = jobid;
EXCEPTION
 WHEN e_resource_busy THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Job information is currently locked, try later.');
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001, 'This job ID does not exist');
 WHEN sal_error THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Data error: Max salary should be more than min salary');
END upd_jobsal;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units APS – 6

Part A: Additional Practice 3 Solutions (continued)

b. Execute the UPD_JOBSAL procedure by using a job ID of 'SY_ANAL', a minimum
salary of 7000, and a maximum salary of 140.
Note: This should generate an exception message.

EXECUTE upd_jobsal('SY_ANAL', 7000, 140)

Error report:
ORA-20001: Data error: Max salary should be more than min salary
ORA-06512: at "ORA61.UPD_JOBSAL", line 28
ORA-06512: at line 1

c. Disable triggers on the EMPLOYEES and JOBS tables.

ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;

d. Execute the UPD_JOBSAL procedure using a job ID of 'SY_ANAL', a minimum
salary of 7000, and a maximum salary of 14000.

EXECUTE upd_jobsal('SY_ANAL', 7000, 14000)

e. Query the JOBS table to view your changes, and then commit the changes.

SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

COMMIT;

f. Enable the triggers on the EMPLOYEES and JOBS tables.

ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;

Oracle Database 10g: Develop PL/SQL Program Units APS – 7

Part A: Additional Practice 4 Solutions

4. In this exercise, create a procedure to monitor whether employees have exceeded their
average salaries for their job type.

a. Disable the SECURE_EMPLOYEES trigger.

ALTER TRIGGER secure_employees DISABLE;

b. In the EMPLOYEES table, add an EXCEED_AVGSAL column for storing up to three
characters and a default value of NO. Use a check constraint to allow the values YES or
NO.

ALTER TABLE employees (
 ADD (exceed_avgsal VARCHAR2(3) DEFAULT 'NO'
 CONSTRAINT employees_exceed_avgsal_ck
 CHECK (exceed_avgsal IN ('YES', 'NO')));

c. Write a stored procedure called CHECK_AVGSAL that checks whether each employee’s
salary exceeds the average salary for the JOB_ID. The average salary for a job is
calculated from information in the JOBS table. If the employee’s salary exceeds the
average for his or her job, update his or her EXCEED_AVGSAL column in the
EMPLOYEES table to a value of YES; otherwise, set the value to NO. Use a cursor to
select the employee’s rows using the FOR UPDATE option in the query. Add exception
handling to account for a record being locked.
Hint: The resource locked/busy error number is –54. Write and use a local function
called GET_JOB_AVGSAL to determine the average salary for a job ID specified as a
parameter.

CREATE OR REPLACE PROCEDURE check_avgsal IS
 avgsal_exceeded employees.exceed_avgsal%type;
 CURSOR emp_csr IS
 SELECT employee_id, job_id, salary
 FROM employees
 FOR UPDATE;
 e_resource_busy EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_resource_busy, -54);

Oracle Database 10g: Develop PL/SQL Program Units APS – 8

Part A: Additional Practice 4 Solutions (continued)

 FUNCTION get_job_avgsal (jobid VARCHAR2) RETURN NUMBER IS
 avg_sal employees.salary%type;
 BEGIN
 SELECT (max_salary + min_salary)/2 INTO avg_sal
 FROM jobs
 WHERE job_id = jobid;
 RETURN avg_sal;
 END;

BEGIN
 FOR emprec IN emp_csr
 LOOP
 avgsal_exceeded := 'NO';
 IF emprec.salary >= get_job_avgsal(emprec.job_id) THEN
 avgsal_exceeded := 'YES';
 END IF;
 UPDATE employees
 SET exceed_avgsal = avgsal_exceeded
 WHERE CURRENT OF emp_csr;
 END LOOP;
EXCEPTION
 WHEN e_resource_busy THEN
 ROLLBACK;
 RAISE_APPLICATION_ERROR (-20001, 'Record is busy, try later.');
END check_avgsal;
/
SHOW ERRORS

d. Execute the CHECK_AVGSAL procedure. Then, to view the results of your modifications,
write a query to display the employee’s ID, job, the average salary for the job, the
employee’s salary, and the exceed_avgsal indicator column for employees whose
salaries exceed the average for their job, and finally commit the changes.

EXECUTE check_avgsal

SELECT e.employee_id, e.job_id, (j.max_salary-j.min_salary/2) job_avgsal,
 e.salary, e.exceed_avgsal avg_exceeded
FROM employees e, jobs j
WHERE e.job_id = j.job_id
and e.exceed_avgsal = 'YES';

COMMIT;

Oracle Database 10g: Develop PL/SQL Program Units APS – 9

Part A: Additional Practice 4 Solutions (continued)

 : : : : :

Oracle Database 10g: Develop PL/SQL Program Units APS – 10

Part A: Additional Practice 5 Solutions

5. Create a subprogram to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_YEARS_SERVICE to retrieve the total number of
years of service for a specific employee. The function should accept the employee ID as a
parameter and return the number of years of service. Add error handling to account for an
invalid employee ID.

CREATE OR REPLACE FUNCTION get_years_service(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 CURSOR jobh_csr IS
 SELECT MONTHS_BETWEEN(end_date, start_date)/12) years_in_job
 FROM job_history
 WHERE employee_id = emp_id;
 years_service NUMBER(2) := 0;
 years_in_job NUMBER(2) := 0;
BEGIN
 FOR jobh_rec IN jobh_csr
 LOOP
 EXIT WHEN jobh_csr%NOTFOUND;
 years_service := years_service + job_rec.years_in_job;
 END LOOP;
 SELECT MONTHS_BETWEEN(SYSDATE, hire_date)/12 INTO years_in_job
 FROM employees
 WHERE employee_id = emp_id;
 years_service := years_service + years_in_job;
 RETURN ROUND(years_service);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| emp_id ||' does not exist.');
END get_years_service;
/
SHOW ERRORS

b. Invoke the GET_YEARS_SERVICE function in a call to DBMS_OUTPUT.PUT_LINE
for an employee with ID 999.

EXECUTE DBMS_OUTPUT.PUT_LINE(get_years_service (999))

Error report:
ORA-20348: Employee with ID 999 does not exist.
ORA-06512: at "ORA61.GET_YEARS_SERVICE", line 22
ORA-06512: at line 1

Oracle Database 10g: Develop PL/SQL Program Units APS – 11

Part A: Additional Practice 5 Solutions (continued)

c. Display the number of years of service for employee 106 with
DBMS_OUTPUT.PUT_LINE invoking the GET_YEARS_SERVICE function.

SET SERVEROUTPUT ON
BEGIN
 DBMS_OUTPUT.PUT_LINE (
 'Employee 106 has worked ' || get_years_service(106) || ' years');
END;
/

d. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.
Note: The values represented in the results on this page may differ from those that you
get when you run these queries.

SELECT employee_id, job_id,
 MONTHS_BETWEEN(end_date, start_date)/12 duration
FROM job_history;

SELECT job_id, MONTHS_BETWEEN(SYSDATE, hire_date)/12 duration
FROM employees
WHERE employee_id = 106;

Oracle Database 10g: Develop PL/SQL Program Units APS – 12

Part A: Additional Practice 6 Solutions

6. In this exercise, create a program to retrieve the number of different jobs that an employee
worked on during his or her service.

a. Create a stored function called GET_JOB_COUNT to retrieve the total number of
different jobs on which an employee worked.

The function should accept the employee ID in a parameter and return the number of
different jobs that the employee worked on until now, including the present job. Add
exception handling to account for an invalid employee ID.
Hint: Use the distinct job IDs from the JOB_HISTORY table and exclude the current job
ID, if it is one of the job IDs on which the employee has already worked. Write a UNION
of two queries and count the rows retrieved into a PL/SQL table. Use a FETCH with
BULK COLLECT INTO to obtain the unique jobs for the employee.

CREATE OR REPLACE FUNCTION get_job_count(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 TYPE jobs_tabtype IS TABLE OF jobs.job_id%type;
 jobtab jobs_tabtype;
 CURSOR empjob_csr IS
 SELECT job_id
 FROM job_history
 WHERE employee_id = emp_id
 UNION
 SELECT job_id
 FROM employees
 WHERE employee_id = emp_id;
BEGIN
 OPEN empjob_csr;
 FETCH empjob_csr BULK COLLECT INTO jobtab;
 CLOSE empjob_csr;
 RETURN jobtab.count;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| emp_id ||' does not exist!');
END get_job_count;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units APS – 13

Part A: Additional Practice 6 Solutions (continued)

b. Invoke the function for an employee with ID 176.

SET SERVEROUTPUT ON
BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee 176 worked on ' ||
 get_job_count(176) || ' different jobs.');
END;
/

Oracle Database 10g: Develop PL/SQL Program Units APS – 14

Part A: Additional Practice 7 Solutions

7. Create a package called EMPJOB_PKG that contains your NEW_JOB, ADD_JOB_HIST, and
UPD_JOBSAL procedures, as well as your GET_YEARS_SERVICE and GET_JOB_COUNT
functions.

a. Create the package specification with all the subprogram constructs public. Move any
subprogram local-defined types into the package specification.

CREATE OR REPLACE PACKAGE empjob_pkg IS
 TYPE jobs_tabtype IS TABLE OF jobs.job_id%type;

 PROCEDURE add_job_hist(
 emp_id IN employees.employee_id%TYPE,
 new_jobid IN jobs.job_id%TYPE);
 FUNCTION get_job_count(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER;
 FUNCTION get_years_service(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER;
 PROCEDURE new_job(
 jobid IN jobs.job_id%TYPE,
 title IN jobs.job_title%TYPE,
 minsal IN jobs.min_salary%TYPE);
 PROCEDURE upd_jobsal(
 jobid IN jobs.job_id%type,
 new_minsal IN jobs.min_salary%type,
 new_maxsal IN jobs.max_salary%type);
END empjob_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units APS – 15

Part A: Additional Practice 7 Solutions (continued)

b. Create the package body with the subprogram implementation; remember to remove
(from the subprogram implementations) any types that you moved into the package
specification.

CREATE OR REPLACE PACKAGE BODY empjob_pkg IS
 PROCEDURE add_job_hist(
 emp_id IN employees.employee_id%TYPE,
 new_jobid IN jobs.job_id%TYPE) IS
 BEGIN
 INSERT INTO job_history
 SELECT employee_id, hire_date, SYSDATE, job_id, department_id
 FROM employees
 WHERE employee_id = emp_id;
 UPDATE employees
 SET hire_date = SYSDATE,
 job_id = new_jobid,
 salary = (SELECT min_salary + 500
 FROM jobs
 WHERE job_id = new_jobid)
 WHERE employee_id = emp_id;
 DBMS_OUTPUT.PUT_LINE ('Added employee ' || emp_id ||
 ' details to the JOB_HISTORY table');
 DBMS_OUTPUT.PUT_LINE ('Updated current job of employee ' ||
 emp_id|| ' to '|| new_jobid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');
 END add_job_hist;

 FUNCTION get_job_count(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 jobtab jobs_tabtype;
 CURSOR empjob_csr IS
 SELECT job_id
 FROM job_history
 WHERE employee_id = emp_id
 UNION
 SELECT job_id
 FROM employees
 WHERE employee_id = emp_id;
 BEGIN
 OPEN empjob_csr;
 FETCH empjob_csr BULK COLLECT INTO jobtab;
 CLOSE empjob_csr;
 RETURN jobtab.count;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| emp_id ||' does not exist!');
 END get_job_count;

Oracle Database 10g: Develop PL/SQL Program Units APS – 16

Part A: Additional Practice 7 Solutions (continued)

 FUNCTION get_years_service(
 emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 CURSOR jobh_csr IS
 SELECT MONTHS_BETWEEN(end_date, start_date)/12 years_in_job
 FROM job_history
 WHERE employee_id = emp_id;
 years_service NUMBER(2) := 0;
 years_in_job NUMBER(2) := 0;
 BEGIN
 FOR jobh_rec IN jobh_csr
 LOOP
 EXIT WHEN jobh_csr%NOTFOUND;
 years_service := years_service + jobh_rec.years_in_job;
 END LOOP;
 SELECT MONTHS_BETWEEN(SYSDATE, hire_date)/12 INTO years_in_job
 FROM employees
 WHERE employee_id = emp_id;
 years_service := years_service + years_in_job;
 RETURN ROUND(years_service);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| emp_id ||' does not exist.');
 END get_years_service;

 PROCEDURE new_job(
 jobid IN jobs.job_id%TYPE,
 title IN jobs.job_title%TYPE,
 minsal IN jobs.min_salary%TYPE) IS
 maxsal jobs.max_salary%TYPE := 2 * minsal;
 BEGIN
 INSERT INTO jobs(job_id, job_title, min_salary, max_salary)
 VALUES (jobid, title, minsal, maxsal);
 DBMS_OUTPUT.PUT_LINE ('New row added to JOBS table:');
 DBMS_OUTPUT.PUT_LINE (jobid || ' ' || title ||' '||
 minsal || ' ' || maxsal);
 END new_job;

Oracle Database 10g: Develop PL/SQL Program Units APS – 17

Part A: Additional Practice 7 Solutions (continued)

 PROCEDURE upd_jobsal(
 jobid IN jobs.job_id%type,
 new_minsal IN jobs.min_salary%type,
 new_maxsal IN jobs.max_salary%type) IS
 dummy PLS_INTEGER;
 e_resource_busy EXCEPTION;
 sal_error EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_resource_busy , -54);
 BEGIN
 IF (new_maxsal < new_minsal) THEN
 RAISE sal_error;
 END IF;
 SELECT 1 INTO dummy
 FROM jobs
 WHERE job_id = jobid
 FOR UPDATE OF min_salary NOWAIT;
 UPDATE jobs
 SET min_salary = new_minsal,
 max_salary = new_maxsal
 WHERE job_id = jobid;
 EXCEPTION
 WHEN e_resource_busy THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Job information is currently locked, try later.');
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001, 'This job ID does not exist');
 WHEN sal_error THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Data error: Max salary should be more than min salary');
 END upd_jobsal;
END empjob_pkg;
/

c. Invoke your EMPJOB_PKG.NEW_JOB procedure to create a new job with ID
PR_MAN, job title Public Relations Manager, and salary 6250.

EXECUTE empjob_pkg.new_job('PR_MAN', 'Public Relations Manager', 6250)

Oracle Database 10g: Develop PL/SQL Program Units APS – 18

Part A: Additional Practice 7 Solutions (continued)

d. Invoke your EMPJOB_PKG.ADD_JOB_HIST procedure to modify the job of employee
ID 110 to job ID PR_MAN.
Note: You need to disable the UPDATE_JOB_HISTORY trigger before you execute the
ADD_JOB_HIST procedure, and reenable the trigger after you have executed the
procedure.

ALTER TRIGGER update_job_history DISABLE;
EXECUTE empjob_pkg.add_job_hist(110, 'PR_MAN')
ALTER TRIGGER update_job_history ENABLE;

e. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

SELECT * FROM jobs WHERE job_id = 'PR_MAN';
SELECT * FROM job_history WHERE employee_id = 110;
SELECT job_id, salary FROM employees WHERE employee_id = 110;

Oracle Database 10g: Develop PL/SQL Program Units APS – 19

Part A: Additional Practice 8 Solutions

8. In this exercise, create a trigger to ensure that the minimum and maximum salaries of a job
are never modified such that the salary of an existing employee with that job ID is outside the
new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE that is fired before every row that is
updated in the MIN_SALARY and MAX_SALARY columns in the JOBS table. For any
minimum or maximum salary value that is changed, check whether the salary of any
existing employee with that job ID in the EMPLOYEES table falls within the new range of
salaries specified for this job ID. Include exception handling to cover a salary range
change that affects the record of any existing employee.

CREATE OR REPLACE TRIGGER check_sal_range
BEFORE UPDATE OF min_salary, max_salary ON jobs
FOR EACH ROW
DECLARE
 minsal employees.salary%TYPE;
 maxsal employees.salary%TYPE;
 e_invalid_salrange EXCEPTION;
BEGIN
 SELECT MIN(salary), MAX(salary) INTO minsal, maxsal
 FROM employees
 WHERE job_id = :NEW.job_id;
 IF (minsal < :NEW.min_salary) OR (maxsal > :NEW.max_salary) THEN
 RAISE e_invalid_salrange;
 END IF;
EXCEPTION
 WHEN e_invalid_salrange THEN
 RAISE_APPLICATION_ERROR(-20550,
 'Employees exist whose salary is out of the specified range. '||
 'Therefore the specified salary range cannot be updated.');
END check_sal_range;
/
SHOW ERRORS

b. Test the trigger using the SY_ANAL job, setting the new minimum salary to 5000 and

the new maximum salary to 7000. Before you make the change, write a query to display the
current salary range for the SY_ANAL job ID, and another query to display the employee ID,
last name, and salary for the same job ID. After the update, query the change (if any) to the
JOBS table for the specified job ID.

Oracle Database 10g: Develop PL/SQL Program Units APS – 20

Part A: Additional Practice 8 Solutions (continued)

SELECT * FROM jobs
WHERE job_id = 'SY_ANAL';

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
 SET min_salary = 5000, max_salary = 7000
 WHERE job_id = 'SY_ANAL';

1 row updated.

SELECT * FROM jobs
WHERE job_id = 'SY_ANAL';

c. Using the job SY_ANAL, set the new minimum salary to 7000 and the new maximum salary
to 18000. Explain the results.

UPDATE jobs
 SET min_salary = 7000, max_salary = 18000
 WHERE job_id = 'SY_ANAL';

Error report:
SQL Error: ORA-20550: Employees exist whose salary is out of the
specified range. Therefore the specified salary range cannot be updated.
ORA-06512: at "ORA61.CHECK_SAL_RANGE", line 14
ORA-04088: error during execution of trigger 'ORA61.CHECK_SAL_RANGE

The update fails to change the salary range due to the functionality provided by the
CHECK_SAL_RANGE trigger because the employee 106 who has the SY_ANAL job ID has a
salary of 6500, which is less than the minimum salary for the new salary range specified in
the UPDATE statement.

Oracle Database 10g: Develop PL/SQL Program Units APS – 21

Part B: Entity Relationship Diagram

TITLE
#* ID
 * title
 * description
 o rating
 o category
 o release date

TITLE_COP
Y
#* ID

RENTAL
#* book date
 o act ret date
 o exp ret date

RESERVATION
#* reservation date

for

the subject
of

available as

a

the subject
f

made against

responsible
for

created
for

responsible
for

set up

 MEMBER
#* ID
 * last name
 o first name
 o address
 o city
 o phone
 * join date

Oracle Database 10g: Develop PL/SQL Program Units APS – 22

Part B (continued)

In this case study, create a package named VIDEO_PKG that contains procedures and functions
for a video store application. This application enables customers to become a member of the
video store. Any member can rent movies, return rented movies, and reserve movies.
Additionally, create a trigger to ensure that any data in the video tables is modified only during
business hours.

Create the package by using SQL Developer and use the DBMS_OUTPUT Oracle-supplied
package to display messages.

The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous page.

Oracle Database 10g: Develop PL/SQL Program Units APS – 23

Part B: Additional Practice 1 Solutions

1. Load and execute the /home/oracle/labs/PLPU/labs/buildvid1.sql script to
create all the required tables and sequences that are needed for this exercise.

SET ECHO OFF
/* Script to build the Video Application (Part 1 - buildvid1.sql)
 for the Oracle Introduction to Oracle with Procedure Builder course.
 Created by: Debby Kramer Creation date: 12/10/95
 Last upated: 2/13/96
 Modified by Nagavalli Pataballa on 26-APR-2001
 For the course Introduction to Oracle9i: PL/SQL
 This part of the script creates tables and sequences that are used
 by Part B of the Additional Practices of the course.
 Ignore the errors which appear due to dropping of table.
*/

DROP TABLE rental CASCADE CONSTRAINTS;
DROP TABLE reservation CASCADE CONSTRAINTS;
DROP TABLE title_copy CASCADE CONSTRAINTS;
DROP TABLE title CASCADE CONSTRAINTS;
DROP TABLE member CASCADE CONSTRAINTS;

PROMPT Please wait while tables are created....

CREATE TABLE MEMBER
 (member_id NUMBER (10) CONSTRAINT member_id_pk PRIMARY KEY
 , last_name VARCHAR2(25)
 CONSTRAINT member_last_nn NOT NULL
 , first_name VARCHAR2(25)
 , address VARCHAR2(100)
 , city VARCHAR2(30)
 , phone VARCHAR2(25)
 , join_date DATE DEFAULT SYSDATE
 CONSTRAINT join_date_nn NOT NULL)
/

CREATE TABLE TITLE
 (title_id NUMBER(10)
 CONSTRAINT title_id_pk PRIMARY KEY
 , title VARCHAR2(60)
 CONSTRAINT title_nn NOT NULL
 , description VARCHAR2(400)
 CONSTRAINT title_desc_nn NOT NULL
 , rating VARCHAR2(4)
 CONSTRAINT title_rating_ck CHECK (rating IN
('G','PG','R','NC17','NR'))
 , category VARCHAR2(20) DEFAULT 'DRAMA'
 CONSTRAINT title_categ_ck CHECK (category IN
('DRAMA','COMEDY','ACTION', 'CHILD','SCIFI','DOCUMENTARY'))
 , release_date DATE)
/

Oracle Database 10g: Develop PL/SQL Program Units APS – 24

Part B: Additional Practice 1 Solutions (continued)

CREATE TABLE TITLE_COPY
 (copy_id NUMBER(10)
 , title_id NUMBER(10)
 CONSTRAINT copy_title_id_fk
 REFERENCES title(title_id)
 , status VARCHAR2(15)
 CONSTRAINT copy_status_nn NOT NULL
 CONSTRAINT copy_status_ck CHECK (status IN ('AVAILABLE',
'DESTROYED',
 'RENTED', 'RESERVED'))
 , CONSTRAINT copy_title_id_pk PRIMARY KEY(copy_id, title_id))
/
CREATE TABLE RENTAL
 (book_date DATE DEFAULT SYSDATE
 , copy_id NUMBER(10)
 , member_id NUMBER(10)
 CONSTRAINT rental_mbr_id_fk REFERENCES member(member_id)
 , title_id NUMBER(10)
 , act_ret_date DATE
 , exp_ret_date DATE DEFAULT SYSDATE+2
 , CONSTRAINT rental_copy_title_id_fk FOREIGN KEY (copy_id, title_id)
 REFERENCES title_copy(copy_id,title_id)
 , CONSTRAINT rental_id_pk PRIMARY KEY(book_date, copy_id, title_id,
member_id))
/
CREATE TABLE RESERVATION
 (res_date DATE
 , member_id NUMBER(10)
 , title_id NUMBER(10)
 , CONSTRAINT res_id_pk PRIMARY KEY(res_date, member_id, title_id))
/

PROMPT Tables created.
DROP SEQUENCE title_id_seq;
DROP SEQUENCE member_id_seq;

PROMPT Creating Sequences...
CREATE SEQUENCE member_id_seq
 START WITH 101
 NOCACHE

CREATE SEQUENCE title_id_seq
 START WITH 92
 NOCACHE
/

PROMPT Sequences created.

PROMPT Run buildvid2.sql now to populate the above tables.

Oracle Database 10g: Develop PL/SQL Program Units APS – 25

Part B: Additional Practice 2 Solutions

2. Load and execute the /home/oracle/labs/PLPU/labs/buildvid2.sql script to
populate all the tables created by the buildvid1.sql script.

/* Script to build the Video Application (Part 2 - buildvid2.sql)
 This part of the script populates the tables that are created using
 buildvid1.sql
 These are used by Part B of the Additional Practices of the course.
 You should run the script buildvid1.sql before running this script to
 create the above tables.
*/

INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Velasquez', 'Carmen',
 '283 King Street', 'Seattle', '587-99-6666', '03-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Ngao', 'LaDoris',
 '5 Modrany', 'Bratislava', '586-355-8882', '08-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL,'Nagayama', 'Midori',
 '68 Via Centrale', 'Sao Paolo', '254-852-5764', '17-JUN-91');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL,'Quick-To-See','Mark',
 '6921 King Way', 'Lagos', '63-559-777', '07-APR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Ropeburn', 'Audry',
 '86 Chu Street', 'Hong Kong', '41-559-87', '04-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Urguhart', 'Molly',
 '3035 Laurier Blvd.', 'Quebec', '418-542-9988','18-JAN-91');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Menchu', 'Roberta',
 'Boulevard de Waterloo 41', 'Brussels', '322-504-2228', '14-MAY-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Biri', 'Ben',
 '398 High St.', 'Columbus', '614-455-9863', '07-APR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Catchpole', 'Antoinette',
 '88 Alfred St.', 'Brisbane', '616-399-1411', '09-FEB-92');

COMMIT;

Oracle Database 10g: Develop PL/SQL Program Units APS – 26

Part B: Additional Practice 2 Solutions (continued)

INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Willie and Christmas Too',
 'All of Willie''s friends made a Christmas list for Santa, but Willie
has yet to create his own wish list.', 'G', 'CHILD', '05-OCT-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Alien Again', 'Another installment of
science fiction history. Can the heroine save the planet from the alien
life form?', 'R', 'SCIFI', '19-MAY-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'The Glob', 'A meteor crashes near a
small American town and unleashes carivorous goo in this classic.', 'NR',
'SCIFI', '12-AUG-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'My Day Off', 'With a little luck and a
lot of ingenuity, a teenager skips school for a day in New York.', 'PG',
'COMEDY', '12-JUL-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Miracles on Ice', 'A six-year-old has
doubts about Santa Claus. But she discovers that miracles really do
exist.', 'PG', 'DRAMA', '12-SEP-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Soda Gang', 'After discovering a cached
of drugs, a young couple find themselves pitted against a vicious gang.',
'NR', 'ACTION', '01-JUN-95');
INSERT INTO title (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Interstellar Wars', 'Futuristic
interstellar action movie. Can the rebels save the humans from the evil
Empire?', 'PG', 'SCIFI','07-JUL-77');

COMMIT;

INSERT INTO title_copy VALUES (1,92, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,93, 'AVAILABLE');
INSERT INTO title_copy VALUES (2,93, 'RENTED');
INSERT INTO title_copy VALUES (1,94, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,95, 'AVAILABLE');
INSERT INTO title_copy VALUES (2,95, 'AVAILABLE');
INSERT INTO title_copy VALUES (3,95, 'RENTED');
INSERT INTO title_copy VALUES (1,96, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,97, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,98, 'RENTED');
INSERT INTO title_copy VALUES (2,98, 'AVAILABLE');

COMMIT;

Oracle Database 10g: Develop PL/SQL Program Units APS – 27

Part B: Additional Practice 2 Solutions (continued)

INSERT INTO reservation VALUES (sysdate-1, 101, 93);
INSERT INTO reservation VALUES (sysdate-2, 106, 102);

COMMIT;

INSERT INTO rental VALUES (sysdate-1, 2, 101, 93, null, sysdate+1);
INSERT INTO rental VALUES (sysdate-2, 3, 102, 95, null, sysdate);
INSERT INTO rental VALUES (sysdate-3, 1, 101, 98, null, sysdate-1);
INSERT INTO rental VALUES (sysdate-4, 1, 106, 97, sysdate-2, sysdate-2);
INSERT INTO rental VALUES (sysdate-3, 1, 101, 92, sysdate-2, sysdate-1);

COMMIT;

PROMPT ** Tables built and data loaded **

Oracle Database 10g: Develop PL/SQL Program Units APS – 28

Part B: Additional Practice 3 Solutions

3. Create a package named VIDEO_PKG with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For
the member ID number, use the sequence MEMBER_ID_SEQ. For the join date, use
SYSDATE. Pass all other values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID
number for the video that a customer wants to rent, and either the customer’s last name or
his or her member ID number into the function. The function should return the due date
for the video. Due dates are three days from the date the video is rented. If the status for a
movie requested is listed as AVAILABLE in the TITLE_COPY table for one copy of this
title, update this TITLE_COPY table and set the status to RENTED. If there is no copy
available, the function must return NULL. Then, insert a new record into the RENTAL
table identifying the booked date as today’s date, the copy ID number, the member ID
number, the title ID number, and the expected return date. Be aware of multiple
customers with the same last name. In this case, have the function return NULL and
display a list of the customers’ names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available,
rented, or damaged) and sets the return date. Pass the title ID, the copy ID, and the status
to this procedure. Check whether there are reservations for that title, and display a
message, if it is reserved. Update the RENTAL table and set the actual return date to
today’s date. Update the status in the TITLE_COPY table based on the status parameter
passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all the video copies
requested in the NEW_RENTAL procedure have a status of RENTED. Pass the member ID
number and the title ID number to this procedure. Insert a new record into the
RESERVATION table and record the reservation date, member ID number, and title ID
number. Print a message indicating that a movie is reserved and its expected date of
return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler
of the public programs. Pass the SQLCODE number to this procedure, and the name of the
program (as a text string) where the error occurred. Use RAISE_APPLICATION_ERROR
to raise a customized error. Start with a unique key violation (-1) and foreign key
violation (-2292). Allow the exception handler to raise a generic error for any other
errors.

Oracle Database 10g: Develop PL/SQL Program Units APS – 29

Part B: Additional Practice 3 Solutions (continued)

VIDEO_PKG Package Specification

CREATE OR REPLACE PACKAGE video_pkg IS
 PROCEDURE new_member
 (lname IN member.last_name%TYPE,
 fname IN member.first_name%TYPE DEFAULT NULL,
 address IN member.address%TYPE DEFAULT NULL,
 city IN member.city%TYPE DEFAULT NULL,
 phone IN member.phone%TYPE DEFAULT NULL);

 FUNCTION new_rental
 (memberid IN rental.member_id%TYPE,
 titleid IN rental.title_id%TYPE)
 RETURN DATE;

 FUNCTION new_rental
 (membername IN member.last_name%TYPE,
 titleid IN rental.title_id%TYPE)
 RETURN DATE;

 PROCEDURE return_movie
 (titleid IN rental.title_id%TYPE,
 copyid IN rental.copy_id%TYPE,
 sts IN title_copy.status%TYPE);
END video_pkg;
/
SHOW ERRORS

VIDEO_PKG Package Body

CREATE OR REPLACE PACKAGE BODY video_pkg IS
 PROCEDURE exception_handler(errcode IN NUMBER, context IN VARCHAR2) IS
 BEGIN
 IF errcode = -1 THEN
 RAISE_APPLICATION_ERROR(-20001,
 'The number is assigned to this member is already in use, '||
 'try again.');
 ELSIF errcode = -2291 THEN
 RAISE_APPLICATION_ERROR(-20002, context ||
 ' has attempted to use a foreign key value that is invalid');
 ELSE
 RAISE_APPLICATION_ERROR(-20999, 'Unhandled error in ' ||
 context || '. Please contact your application '||
 'administrator with the following information: '
 || CHR(13) || SQLERRM);
 END IF;
 END exception_handler;

Oracle Database 10g: Develop PL/SQL Program Units APS – 30

Part B: Additional Practice 3 Solutions (continued)

 PROCEDURE reserve_movie
 (memberid IN reservation.member_id%TYPE,
 titleid IN reservation.title_id%TYPE) IS
 CURSOR rented_csr IS
 SELECT exp_ret_date
 FROM rental
 WHERE title_id = titleid
 AND act_ret_date IS NULL;
 BEGIN
 INSERT INTO reservation (res_date, member_id, title_id)
 VALUES (SYSDATE, memberid, titleid);
 COMMIT;
 FOR rented_rec IN rented_csr LOOP
 DBMS_OUTPUT.PUT_LINE('Movie reserved. Expected back on: '
 || rented_rec.exp_ret_date);
 EXIT WHEN rented_csr%found;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RESERVE_MOVIE');
 END reserve_movie;

 PROCEDURE return_movie(
 titleid IN rental.title_id%TYPE,
 copyid IN rental.copy_id%TYPE,
 sts IN title_copy.status%TYPE) IS
 v_dummy VARCHAR2(1);
 CURSOR res_csr IS
 SELECT *
 FROM reservation
 WHERE title_id = titleid;
 BEGIN
 SELECT '' INTO v_dummy
 FROM title
 WHERE title_id = titleid;
 UPDATE rental
 SET act_ret_date = SYSDATE
 WHERE title_id = titleid
 AND copy_id = copyid AND act_ret_date IS NULL;
 UPDATE title_copy
 SET status = UPPER(sts)
 WHERE title_id = titleid AND copy_id = copyid;
 FOR res_rec IN res_csr LOOP
 IF res_csr%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Put this movie on hold -- '||
 'reserved by member #' || res_rec.member_id);
 END IF;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RETURN_MOVIE');
 END return_movie;

Oracle Database 10g: Develop PL/SQL Program Units APS – 31

Part B: Additional Practice 3 Solutions (continued)

 FUNCTION new_rental(
 memberid IN rental.member_id%TYPE,
 titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR copy_csr IS
 SELECT * FROM title_copy
 WHERE title_id = titleid
 FOR UPDATE;
 flag BOOLEAN := FALSE;
 BEGIN

 FOR copy_rec IN copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF copy_csr;
 INSERT INTO rental(book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, memberid,
 titleid, SYSDATE + 3);
 flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF flag THEN
 RETURN (SYSDATE + 3);
 ELSE
 reserve_movie(memberid, titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 END new_rental;

 FUNCTION new_rental(
 membername IN member.last_name%TYPE,
 titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR copy_csr IS
 SELECT * FROM title_copy
 WHERE title_id = titleid
 FOR UPDATE;
 flag BOOLEAN := FALSE;
 memberid member.member_id%TYPE;
 CURSOR member_csr IS
 SELECT member_id, last_name, first_name
 FROM member
 WHERE LOWER(last_name) = LOWER(membername)
 ORDER BY last_name, first_name;

Oracle Database 10g: Develop PL/SQL Program Units APS – 32

Part B: Additional Practice 3 Solutions (continued)

 BEGIN
 SELECT member_id INTO memberid
 FROM member
 WHERE lower(last_name) = lower(membername);
 FOR copy_rec IN copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF copy_csr;
 INSERT INTO rental (book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, memberid,
 titleid, SYSDATE + 3);
 flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF flag THEN
 RETURN(SYSDATE + 3);
 ELSE
 reserve_movie(memberid, titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE(
 'Warning! More than one member by this name.');
 FOR member_rec IN member_csr LOOP
 DBMS_OUTPUT.PUT_LINE(member_rec.member_id || CHR(9) ||
 member_rec.last_name || ', ' || member_rec.first_name);
 END LOOP;
 RETURN NULL;
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 END new_rental;

 PROCEDURE new_member(
 lname IN member.last_name%TYPE,
 fname IN member.first_name%TYPE DEFAULT NULL,
 address IN member.address%TYPE DEFAULT NULL,
 city IN member.city%TYPE DEFAULT NULL,
 phone IN member.phone%TYPE DEFAULT NULL) IS
 BEGIN
 INSERT INTO member(member_id, last_name, first_name,
 address, city, phone, join_date)
 VALUES(member_id_seq.NEXTVAL, lname, fname,
 address, city, phone, SYSDATE);
 COMMIT;

Oracle Database 10g: Develop PL/SQL Program Units APS – 33

Part B: Additional Practice 3 Solutions (continued)

 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_MEMBER');
 END new_member;
END video_pkg;
/
SHOW ERRORS

Oracle Database 10g: Develop PL/SQL Program Units APS – 34

Part B: Additional Practice 4 Solutions

4. Use the following scripts located in the /home/oracle/labs/PLPU/soln directory to
test your routines:

a. Add two members using sol_apb_04_a.sql.

SET SERVEROUTPUT ON
EXECUTE video_pkg.new_member('Haas', 'James', 'Chestnut Street',
'Boston', '617-123-4567')
EXECUTE video_pkg.new_member('Biri', 'Allan', 'Hiawatha Drive', 'New
York', '516-123-4567')

b. Add new video rentals using sol_apb_04_b.sql.

SET SERVEROUTPUT ON
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(110, 98))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(109, 93))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(107, 98))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental('Biri', 97))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(97, 97))

28-FEB-09
28-FEB-09
Movie reserved. Expected back on: 24-FEB-09

Warning! More than one member by this name.
111 Biri, Allan
108 Biri, Ben

Error report:
ORA-20002: NEW_RENTAL has attempted to use a foreign key value that is
invalid
ORA-06512: at "ORA61.VIDEO_PKG", line 9
ORA-06512: at "ORA61.VIDEO_PKG", line 103
ORA-06512: at line 1

Oracle Database 10g: Develop PL/SQL Program Units APS – 35

Part B: Additional Practice 4 Solutions (continued)

c. Return movies using the sol_apb_04_c.sql script.

SET SERVEROUTPUT ON
EXECUTE video_pkg.return_movie(98, 1, 'AVAILABLE')
EXECUTE video_pkg.return_movie(95, 3, 'AVAILABLE')
EXECUTE video_pkg.return_movie(111, 1, 'RENTED')

anonymous block completed
Put this movie on hold -- reserved by member #107

anonymous block completed

Error starting at line 4 in command:
EXECUTE video_pkg.return_movie(111, 1, 'RENTED')
Error report:
ORA-20999: Unhandled error in RETURN_MOVIE. Please contact your
application administrator with the following information:
ORA-01403: no data found
ORA-06512: at "ORA61.VIDEO_PKG", line 12
ORA-06512: at "ORA61.VIDEO_PKG", line 69
ORA-06512: at line 1

Oracle Database 10g: Develop PL/SQL Program Units APS – 36

Part B: Additional Practice 5 Solutions

5. The business hours for the video store are 8:00 AM to 10:00 PM, Sunday through Friday, and
8:00 AM to 12:00 AM on Saturday. To ensure that the tables can be modified only during
these hours, create a stored procedure that is called by triggers on the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against
business hours. If the current time is not within business hours, use the
RAISE_APPLICATION_ERROR procedure to give an appropriate message.

CREATE OR REPLACE PROCEDURE time_check IS
BEGIN
 IF ((TO_CHAR(SYSDATE,'D') BETWEEN 1 AND 6) AND
 (TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi') NOT BETWEEN
 TO_DATE('08:00', 'hh24:mi') AND TO_DATE('22:00', 'hh24:mi')))
 OR ((TO_CHAR(SYSDATE, 'D') = 7)
 AND (TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi') NOT BETWEEN
 TO_DATE('08:00', 'hh24:mi') AND TO_DATE('24:00', 'hh24:mi'))) THEN
 RAISE_APPLICATION_ERROR(-20999,
 'Data changes restricted to office hours.');
 END IF;
END time_check;
/
SHOW ERRORS

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated,
and deleted from the tables. Call your TIME_CHECK procedure from each of these
triggers.

CREATE OR REPLACE TRIGGER member_trig
 BEFORE INSERT OR UPDATE OR DELETE ON member
CALL time_check
/

CREATE OR REPLACE TRIGGER rental_trig
 BEFORE INSERT OR UPDATE OR DELETE ON rental
CALL time_check
/

CREATE OR REPLACE TRIGGER title_copy_trig
 BEFORE INSERT OR UPDATE OR DELETE ON title_copy
CALL time_check
/

CREATE OR REPLACE TRIGGER title_trig
 BEFORE INSERT OR UPDATE OR DELETE ON title
CALL time_check
/

Oracle Database 10g: Develop PL/SQL Program Units APS – 37

Part B: Additional Practice 5 Solutions (continued)

CREATE OR REPLACE TRIGGER reservation_trig
 BEFORE INSERT OR UPDATE OR DELETE ON reservation
CALL time_check
/

c. Test your triggers.

Note: In order for your trigger to fail, you may need to change the time to be outside the
range of your current time in class. For example, while testing, you may want valid video
hours in your trigger to be from 6:00 PM to 8:00 AM.

-- First determine current timezone and time
SELECT SESSIONTIMEZONE,
 TO_CHAR(CURRENT_DATE, 'DD-MON-YYYY HH24:MI') CURR_DATE
FROM DUAL;

-- If required, change your time zone using [+|-]HH:MI format such that
the current
-- time returns a time between 6pm and 8am
ALTER SESSION SET TIME_ZONE='-07:00';

-- check your timezone again

SELECT SESSIONTIMEZONE,
 TO_CHAR(CURRENT_DATE, 'DD-MON-YYYY HH24:MI') CURR_DATE
FROM DUAL;

Oracle Database 10g: Develop PL/SQL Program Units APS – 38

Part B: Additional Practice 5 Solutions (continued)

-- Add a new member (for a sample test)
EXECUTE video_pkg.new_member('Elias', 'Elliane', 'Vine Street',
'California', '789-123-4567')

Error report:
ORA-20999: Unhandled error in NEW_MEMBER. Please contact your application
administrator with the following information:
ORA-20999: Data changes restricted to office hours.
ORA-06512: at "ORA61.TIME_CHECK", line 9
ORA-06512: at "ORA61.MEMBER_TRIG", line 1
ORA-04088: error during execution of trigger 'ORA61.MEMBER_TRIG'
ORA-06512: at "ORA61.VIDEO_PKG", line 12
ORA-06512: at "ORA61.VIDEO_PKG", line 173
ORA-06512: at line 1

-- If you had changed your time zone, restore the original time zone for
your session.
ALTER SESSION SET TIME_ZONE='-00:00';

